Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Kang, Y.-G.*; Avdeev, M.*; Sibille, R.*; Iida, Kazuki*; Kajimoto, Ryoichi; Lee, K. H.*; et al.
Nature Communications (Internet), 14, p.8346_1 - 8346_9, 2023/12
Times Cited Count:13 Percentile:81.42(Multidisciplinary Sciences)Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Times Cited Count:6 Percentile:87.41(Astronomy & Astrophysics)Gamma decays were observed in Ca and
Ca following quasi-free one-proton knockout reactions from
Sc. For
Ca, a
ray transition was measured to be 1456(12) keV, while for
Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the
decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for
level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the
and
orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic
Ca and potentially drives the dripline of Ca isotopes to
Ca or even beyond.
Lee, O.*; Yamamoto, Kei; Umeda, Maki; Zollitsch, C. W.*; Elyasi, M.*; Kikkawa, Takashi*; Saito, Eiji; Bauer, G. E. W.*; Kurebayashi, Hidekazu*
Physical Review Letters, 130(4), p.046703_1 - 046703_6, 2023/01
Times Cited Count:13 Percentile:92.99(Physics, Multidisciplinary)Wei, D.*; Gong, W.; Tsuru, Tomohito; Lobzenko, I.; Li, X.*; Harjo, S.; Kawasaki, Takuro; Do, H.-S.*; Bae, J. W.*; Wagner, C.*; et al.
International Journal of Plasticity, 159, p.103443_1 - 103443_18, 2022/12
Times Cited Count:86 Percentile:99.65(Engineering, Mechanical)Thiessen, K. M.*; Boznar, M. Z.*; Charnock, T. W.*; Chouhan, S. L.*; Federspiel, L.; Grai
, B.*; Grsic, Z.*; Helebrant, J.*; Hettrich, S.*; Hulka, J.*; et al.
Journal of Radiological Protection, 42(2), p.020502_1 - 020502_8, 2022/06
Times Cited Count:5 Percentile:68.13(Environmental Sciences)Gens, A.*; Alcoverro, J.*; Blaheta, R.*; Hasal, M.*; Michalec, Z.*; Takayama, Yusuke; Lee, C.*; Lee, J.*; Kim, G. Y.*; Kuo, C.-W.*; et al.
International Journal of Rock Mechanics and Mining Sciences, 137, p.104572_1 - 104572_19, 2021/01
Times Cited Count:21 Percentile:84.18(Engineering, Geological)Bentonite-based engineered barriers are a key component of many repository designs for the confinement of high-level radioactive waste and spent fuel. Given the complexity and interaction of the phenomena affecting the barrier, coupled hydro-mechanical (HM) and thermo-hydro-mechanical (THM) numerical analyses are a potentially useful tool for a better understanding of their behaviour. In this context, a Task (INBEB) was undertaken to study, using numerical analyses, the hydro-mechanical and thermohydro-mechanical Interactions in Bentonite Engineered Barriers within the international cooperative project DECOVALEX 2019. Two large scale tests, largely complementary, were selected for modelling: EB and FEBEX. The EB experiment was carried out under isothermal conditions and artificial hydration and it was dismantled after 10.7 years. The FEBEX test was a temperature-controlled non-isothermal test combined with natural hydration that underwent two dismantling operations, a partial one after 5 years of heating and a final one after a total of 18.4 years of heating. Direct observation of the state of the barriers was possible during the dismantling operations. Four teams performed the HM and THM numerical analyses using a variety of computer codes, formulations and constitutive laws. For each experiment, the basic features of the analyses are described and the comparison between calculations and field observations are presented and discussed. Comparisons involve measurements performed during the performance of the test and data gathered during dismantling. A final evaluation of the performance of the modelling closes the paper.
Gens, A.*; Alcoverro, J.*; Blaheta, R.*; Hasal, M.*; Michalec, Z.*; Takayama, Yusuke; Lee, C.*; Lee, J.*; Kim, G. Y.*; Kuo, C.-W.*; et al.
LBNL-2001267 (Internet), 210 Pages, 2020/10
This document is the final report of Task D of the DECOVALEX-2019 project, presenting the definitions of the problems studied, approaches applied, achievements made and outstanding issues identified for future research. Task D of the DECOVALEX 2019 project is devoted to the study of the hydro-mechanical and thermo-hydro-mechanical Interactions in Bentonite Engineered Barriers. The Task is structured around two large scale in situ experiments that were subjected to well managed dismantling operations that provided direct observations of the state of the barrier after long test periods. Four teams carried out the modelling of the two experiments: Institute of Geonics, of the Czech Academy of Sciences (IGN), supported by SURAO, Czech Republic, Japan Atomic Energy Agency (JAEA), Korea Atomic Energy Research Institute (KAERI) and National Central University of Taiwan (NCU), supported by the Taipower.
Plompen, A. J. M.*; Cabellos, O.*; De Saint Jean, C.*; Fleming, M.*; Algora, A.*; Angelone, M.*; Archier, P.*; Bauge, E.*; Bersillon, O.*; Blokhin, A.*; et al.
European Physical Journal A, 56(7), p.181_1 - 181_108, 2020/07
Times Cited Count:422 Percentile:98.82(Physics, Nuclear)The Joint Evaluated Fission and Fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides U,
U and
Pu, on
Am and
Na,
Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yileds, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 is excellent for a wide range of nuclear technology applications, in particular nuclear energy.
Lokotko, T.*; Leblond, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Poves, A.*; Nowacki, F.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Authelet, G.*; et al.
Physical Review C, 101(3), p.034314_1 - 034314_7, 2020/03
Times Cited Count:11 Percentile:73.58(Physics, Nuclear)The structures of the neutron-rich Co isotopes were investigated via (
) knockout reactions at the Radioactive Isotope Beam Factory, RIKEN. Level schemes were reconstructed using the
coincidence technique, with tentative spin-parity assignments based on the measured inclusive and exclusive cross sections. Comparison with shell-model calculations suggests coexistence of spherical and deformed shapes at low excitation energies in the
Co isotopes.
Wang, Y.*; Dong, X.*; Tang, X.*; Zheng, H.*; Li, K.*; Lin, X.*; Fang, L.*; Sun, G.*; Chen, X.*; Xie, L.*; et al.
Angewandte Chemie; International Edition, 58(5), p.1468 - 1473, 2019/01
Times Cited Count:45 Percentile:82.40(Chemistry, Multidisciplinary)Pressure-induced polymerization (PIP) of aromatics is a novel method to construct sp-carbon frameworks, and nanothreads with diamond-like structures were synthesized by compressing benzene and its derivatives. Here by compressing benzene-hexafluorobenzene cocrystal(CHCF), we identified H-F-substituted graphane with a layered structure in the PIP product. Based on the crystal structure determined from the in situ neutron diffraction and the intermediate products identified by the gas chromatography-mass spectrum, we found that at 20 GPa CHCF forms tilted columns with benzene and hexafluorobenzene stacked alternatively, which leads to a [4+2] polymer, and then transfers to short-range ordered hydrogenated-fluorinated graphane. The reaction process contains [4+2] Diels-Alder, retro-Diels-Alder, and 1-1' coupling, and the former is the key reaction in the PIP. Our studies confirmed the elemental reactions of the CHCF for the first time, which provides a novel insight into the PIP of aromatics.
Elekes, Z.*; Kripk,
*; Sohler, D.*; Sieja, K.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Doornenbal, P.*; Obertelli, A.*; Authelet, G.*; Baba, Hidetada*; et al.
Physical Review C, 99(1), p.014312_1 - 014312_7, 2019/01
Times Cited Count:12 Percentile:72.85(Physics, Nuclear)The nuclear structure of the Ni nucleus was investigated by (
,
) reaction using a NaI(Tl) array to detect the deexciting prompt
rays. A new transition with an energy of 2227 keV was identified by
and
coincidences. Our shell-model calculations using the Lenzi, Nowacki, Poves, and Sieja interaction produced good candidates for the experimental proton hole states in the observed energy region, and the theoretical cross sections showed good agreement with the experimental values. Although we could not assign all the experimental states to the theoretical ones unambiguously, the results are consistent with a reasonably large Z = 28 shell gap for nickel isotopes in accordance with previous studies.
Wu, P.*; Zhang, B.*; Peng, K. L.*; Hagiwara, Masayuki*; Ishikawa, Yoshihisa*; Kofu, Maiko; Lee, S. H.*; Kumigashira, Hiroshi*; Hu, C. S.*; Qi, Z. M.*; et al.
Physical Review B, 98(9), p.094305_1 - 094305_7, 2018/09
Times Cited Count:13 Percentile:50.83(Materials Science, Multidisciplinary)Using angle-resolved photoemission spectroscopy and inelastic neutron scattering, we have studied how electronic structures and lattice dynamics evolve with temperature in Na-doped SnSe.
Ho, D. M. L.*; Nelwamondo, A. N.*; Okubo, Ayako; Ramebck, H.*; Song, K.*; Han, S.-H.*; Hancke, J. J.*; Holmgren, S.*; Jonsson, S.*; Kataoka, Osamu; et al.
Journal of Radioanalytical and Nuclear Chemistry, 315(2), p.353 - 363, 2018/02
Times Cited Count:2 Percentile:19.05(Chemistry, Analytical)The Fourth Collaborative Material Exercise (CMX-4) of the Nuclear Forensics International Technical Working Group (ITWG) registered the largest participation for this exercise in nuclear forensics, with seven of the 17 laboratories participating for the first time. In this paper, participants from five of the first-time laboratories shared their individual experience in this exercise, from preparation to analysis of samples. The exercise proved to be highly useful for testing procedures, repurposing established methods, exercising skills, and improving the understanding of nuclear forensic signatures and their interpretation trough the post-exercise review meeting.
Kristo, M. J.*; Williams, R.*; Gaffney, A. M.*; Kayzar-Boggs, T. M.*; Schorzman, K. C.*; Lagerkvist, P.*; Vesterlund, A.*; Ramebck, H.*; Nelwamondo, A. N.*; Kotze, D.*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 315(2), p.425 - 434, 2018/02
Times Cited Count:16 Percentile:81.61(Chemistry, Analytical)In a recent international exercise, 10 international nuclear forensics laboratories successfully performed radiochronometry on three low enriched uranium oxide samples, providing 12 analytical results using three different parent-daughter pairs serving as independent chronometers. The vast majority of the results were consistent with one another and consistent with the known processing history of the materials. In general, for these particular samples, mass spectrometry gave more accurate and more precise analytical results than decay counting measurements. In addition, the concordance of the U-
Pa and
U-
Th chronometers confirmed the validity of the age dating assumptions, increasing confidence in the resulting conclusions.
Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Kahler, A. C.*; Talou, P.*; Plompen, A. J.*; Schillebeeckx, P.*; et al.
Nuclear Data Sheets, 148, p.189 - 213, 2018/02
Times Cited Count:73 Percentile:98.03(Physics, Nuclear)The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear facilities - U,
U,
Pu,
Fe,
O and
H - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality. This report summarizes our results and outlines plans for the next phase of this collaboration.
Shand, C. M.*; Podolyk, Zs.*; G
rska, M.*; Doornenbal, P.*; Obertelli, A.*; Nowacki, F.*; Otsuka, T.*; Sieja, K.*; Tostevin, J. A.*; Tsunoda, T.*; et al.
Physics Letters B, 773, p.492 - 497, 2017/10
Times Cited Count:27 Percentile:87.73(Astronomy & Astrophysics)Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Kahler, A. C.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Pigni, M.*; Dunn, M.*; Leal, L.*; et al.
EPJ Web of Conferences, 146, p.02001_1 - 02001_9, 2017/09
Times Cited Count:8 Percentile:94.17(Nuclear Science & Technology)The CIELO collaboration has studied neutron cross sections on nuclides (O,
Fe,
U and
Pu) that significantly impact criticality in nuclear technologies with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality.
Flavigny, F.*; Doornenbal, P.*; Obertelli, A.*; Delaroche, J.-P.*; Girod, M.*; Libert, J.*; Rodriguez, T. R.*; Authelet, G.*; Baba, Hidetada*; Calvet, D.*; et al.
Physical Review Letters, 118(24), p.242501_1 - 242501_6, 2017/06
Times Cited Count:40 Percentile:86.66(Physics, Multidisciplinary)Chen, S.*; Doornenbal, P.*; Obertelli, A.*; Rodriguez, T. R.*; Authelet, G.*; Baba, Hidetada*; Calvet, D.*; Chteau, F.*; Corsi, A.*; Delbart, A.*; et al.
Physical Review C, 95(4), p.041302_1 - 041302_6, 2017/04
Times Cited Count:31 Percentile:89.99(Physics, Nuclear)Paul, N.*; Corsi, A.*; Obertelli, A.*; Doornenbal, P.*; Authelet, G.*; Baba, Hidetada*; Bally, B.*; Bender, M.*; Calvet, D.*; Chteau, F.*; et al.
Physical Review Letters, 118(3), p.032501_1 - 032501_7, 2017/01
Times Cited Count:46 Percentile:88.80(Physics, Multidisciplinary)