Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kim, M.*; Lee, C.*; Sugita, Yutaka; Kim, J.-S.*; Jeon, M.-K.*
Geomechanics for Energy and the Environment, 41, p.100628_1 - 100628_9, 2025/03
Times Cited Count:1 Percentile:0.00(Energy & Fuels)This study investigates the impact of primary variables selection on the modeling of non-isothermal two-phase flow, by using the numerical work on the full-scale Engineered Barrier System (EBS) experiment conducted at Horonobe URL as part of the DECOVALEX-2023 project. A validated numerical model is employed to simulate the coupled thermo-hydrological behavior of heterogeneous porous media within the EBS. Two different primary variable schemes are compared in discretizing the governing equations, revealing significant difference in results.
Ahmed, A.*; Uttarasak, K.*; Tsuchiya, Taiki*; Lee, S.*; Nishimura, Katsuhiko*; Nunomura, Norio*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Toda, Hiroyuki*; Yamaguchi, Masatake; et al.
Journal of Alloys and Compounds, 988, p.174234_1 - 174234_9, 2024/06
Times Cited Count:10 Percentile:95.29(Chemistry, Physical)This study aims to clarify the growth process of the-phase in Al-Mg-Si alloys from the point of view of morphology evolution. For this research, the
-phase orientation relationship, shape, growth process, misfit value, and interfacial condition between the
-phase and Al matrix were investigated using high-resolution transmission electron microscopy (HR-TEM), focus ion beam (FIB), and optical microscope (OM). Results include the identification of {111}
facets at the edges of the
-phase, as well as the proposal of two new three-dimensional shapes for the
-phase. We purposed the morphology evolution during the growth process of Mg
Si crystal and calculated the misfit to understand the unstable (111)
facet has a higher misfit value as compared to the (001)
and (011)
facets. Our observations provide how they influence the behavior of Mg
Si crystals.
Kim, Y. S.*; Chae, H.*; Lee, D.-Y.*; Han, J. H.*; Hong, S.-K.*; Na, Y. S.*; Harjo, S.; Kawasaki, Takuro; Woo, W.*; Lee, S.-Y.*
Materials Science & Engineering A, 899, p.146453_1 - 146453_7, 2024/05
Times Cited Count:4 Percentile:79.11(Nanoscience & Nanotechnology)Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Kang, Y.-G.*; Avdeev, M.*; Sibille, R.*; Iida, Kazuki*; Kajimoto, Ryoichi; Lee, K. H.*; et al.
Nature Communications (Internet), 14, p.8346_1 - 8346_9, 2023/12
Times Cited Count:23 Percentile:86.45(Multidisciplinary Sciences)Shamoto, Shinichi; Yamauchi, Hiroki; Iida, Kazuki*; Ikeuchi, Kazuhiko*; Hall, A. E.*; Chen, Y.-S.*; Lee, M. K.*; Balakrishnan, G.*; Chang, L.-J.*
Communications Physics (Internet), 6, p.248_1 - 248_6, 2023/09
Times Cited Count:2 Percentile:38.73(Physics, Multidisciplinary)We show that the local spin correlation order has a spiral structure by neutron scattering measurement of a MnRhSi single crystal. The possible origins of the magnetic cluster formation are discussed in terms of the Lifshitz invariant and the Griffiths phase, and compared with the room-temperature skyrmion phase of Co
Zn
Mn
and non-Fermi liquid behavior of
-Mn.
Lee, S.*; Nakata, Koki; Tchernyshyov, O.*; Kim, S. K.*
Physical Review B, 107(18), p.184432_1 - 184432_12, 2023/05
Times Cited Count:13 Percentile:84.75(Materials Science, Multidisciplinary)We theoretically investigate the interaction between magnons and a Skyrmion-textured domain wall in a two-dimensional antiferromagnet and elucidate the resultant properties of magnon transport. Using supersymmetric quantum mechanics, we solve the scattering problem of magnons on top of the domain wall and obtain the exact solutions of propagating and bound magnon modes. Then, we find their properties of reflection and refraction in the Skyrmion-textured domain wall, where magnons experience an emergent magnetic field due to its non-trivial spin texture-induced effective gauge field. Finally, we show that the thermal transport decreases as the domain wall's chirality increases. Our results suggest that the thermal transport of an antiferromagnet is tunable by modulating the Skyrmion charge density of the domain wall.
Lee, S.*; Nakata, Koki; Tchernyshyov, O.*; Kim, S. K.*
Proceedings of IEEE International Magnetics Conference 2023 (INTERMAG 2023) (Internet), 2 Pages, 2023/05
Kwon, H.*; Sathiyamoorthi, P.*; Gangaraju, M. K.*; Zargaran, A.*; Wang, J.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Lee, B.-J.*; Kim, H. S.*
Acta Materialia, 248, p.118810_1 - 118810_12, 2023/04
Times Cited Count:54 Percentile:99.28(Materials Science, Multidisciplinary)Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:4 Percentile:20.33(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe
on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Woo, W.*; Kim, Y. S.*; Chae, H. B.*; Lee, S. Y.*; Jeong, J. S.*; Lee, C. M.*; Won, J. W.*; Na, Y. S.*; Kawasaki, Takuro; Harjo, S.; et al.
Acta Materialia, 246, p.118699_1 - 118699_13, 2023/03
Times Cited Count:49 Percentile:99.20(Materials Science, Multidisciplinary)Iimura, Shun*; Rosenbusch, M.*; Takamine, Aiko*; Tsunoda, Yusuke*; Wada, Michiharu*; Chen, S.*; Hou, D. S.*; Xian, W.*; Ishiyama, Hironobu*; Yan, S.*; et al.
Physical Review Letters, 130(1), p.012501_1 - 012501_6, 2023/01
Times Cited Count:13 Percentile:88.67(Physics, Multidisciplinary)Kim, Y. S.*; Chae, H.*; Woo, W.*; Kim, D.-K.*; Lee, D.-H.*; Harjo, S.; Kawasaki, Takuro; Lee, S. Y.*
Materials Science & Engineering A, 828, p.142059_1 - 142059_10, 2021/11
Times Cited Count:33 Percentile:88.56(Nanoscience & Nanotechnology)Shamoto, Shinichi; Yamauchi, Hiroki; Ikeuchi, Kazuhiko*; Lee, M. K.*; Chang, L.-J.*; Garlea, V. O.*; Hwang, I. Y.*; Lee, K. H.*; Chung, J.-H.*
Journal of the Physical Society of Japan, 90(9), p.093703_1 - 093703_4, 2021/09
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)no abstracts in English
Rossi, F.; Abbas, K.*; Koizumi, Mitsuo; Lee, H.-J.; Rodriguez, D.; Takahashi, Tone
Proceedings of INMM & ESARDA Joint Virtual Annual Meeting (Internet), 7 Pages, 2021/08
Shamoto, Shinichi; Lee, M. K.*; Fujimura, Yuki; Kondo, Keietsu; Ito, Takashi; Ikeuchi, Kazuhiko*; Yasuda, Satoshi; Chang, L.-J.*
Materials Research Express (Internet), 8(7), p.076303_1 - 076303_6, 2021/07
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Pb, Ga, and Ga doped lead free Sn-Ag-Cu solders are used to study the gallium effect for the low joint resistivity with silver sheathed DI BISCCO type H tapes. The results are reported.
Hwang, I. Y.*; Lee, K. H.*; Chung, J.-H.*; Ikeuchi, Kazuhiko*; Garlea, V. O.*; Yamauchi, Hiroki; Akatsu, Mitsuhiro*; Shamoto, Shinichi
Journal of the Physical Society of Japan, 90(6), p.064708_1 - 064708_6, 2021/06
Times Cited Count:5 Percentile:44.31(Physics, Multidisciplinary)no abstracts in English
Kwon, H.*; Pietrasiak, E.*; Ohara, Takashi; Nakao, Akiko*; Chae, B.*; Hwang, C.-C.*; Jung, D.*; Hwang, I.-C.*; Ko, Y. H.*; Kim, K.*; et al.
Inorganic Chemistry, 60(9), p.6403 - 6409, 2021/05
Times Cited Count:0 Percentile:0.00(Chemistry, Inorganic & Nuclear)Miao, P.*; Tan, Z.*; Lee, S. H.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Yonemura, Masao*; Koda, Akihiro*; Komatsu, Kazuki*; Machida, Shinichi*; Sano, Asami; et al.
Physical Review B, 103(9), p.094302_1 - 094302_18, 2021/03
Times Cited Count:5 Percentile:23.69(Materials Science, Multidisciplinary)The layered perovskite PrBaCoO
demonstrates a strong negative thermal expansion (NTE) which holds potential for being fabricated into composites with zero thermal expansion. The NTE was found to be intimately associated with the spontaneous magnetic ordering, known as magneto-volume effect (MVE). Here we report with compelling evidences that the continuous-like MVE in PrBaCo
O
is intrinsically of discontinuous character, originating from an magnetoelectric transition from an antiferromagnetic insulating large-volume (AFILV) phase to a ferromagnetic less-insulating small-volume (FLISV) phase. Furthermore, the magnetoelectric effect (ME) shows high sensitivity to multiple external stimuli such as temperature, carrier doping, hydrostatic pressure, magnetic field etc. In contrast to the well-known ME such as colossal magnetoresistance and multi-ferroic effect which involve symmetry breaking of crystal structure, the ME in the cobaltite is purely isostructural. Our discovery provides a new path way to realizing the ME as well as the NTE, which may find applications in new techniques.
Sato, Tatsuhiko; Funamoto, Sachiyo*; Paulbeck, C.*; Griffin, K.*; Lee, C.*; Cullings, H.*; Egbert, S. D.*; Endo, Akira; Hertel, N.*; Bolch, W. E.*
Radiation Research, 194(4), p.390 - 402, 2020/10
Times Cited Count:7 Percentile:41.54(Biology)Owing to recent advances in computational dosimetry tools, it is desirable to update the dosimetry system for the atomic-bomb survivors as it was established by DS02. In the current study, we have investigated the possible impact of introducing not only the J45 phantom series but also various methodological upgrades to the DS02 dosimetry system. It was found that the anatomical improvement in the J45 phantom series is the most important factor leading to potential changes in survivor organ doses. In addition, this study established a series of response functions which allows for the rapid conversion of the unidirectional quasi-monoenergetic photon and neutron fluences to organ doses within the J45 adult phantoms. This system of response functions can be implemented within a revision to the DS02 dosimetry system and used for future updates to organ doses within the Life Span Study of the atomic-bomb survivors.
Wu, P.*; Fan, F.-R.*; Hagihara, Masato*; Kofu, Maiko; Peng, K.*; Ishikawa, Yoshihisa*; Lee, S.*; Honda, Takashi*; Yonemura, Masao*; Ikeda, Kazutaka*; et al.
New Journal of Physics (Internet), 22(8), p.083083_1 - 083083_9, 2020/08
Times Cited Count:13 Percentile:64.36(Physics, Multidisciplinary)Thermoelectric material SnSe has aroused world-wide interests in the past years, and its inherent strong lattice anharmonicity is regarded as a crucial factor for its outstanding thermoelectric performance. However, the understanding of lattice anharmonicity in SnSe system remains inadequate, especially regarding how phonon dynamics are affected by this behavior. In this work, we present a comprehensive study of lattice dynamics on NaSn
Se
S
by means of neutron total scattering, inelastic neutron scattering, Raman spectroscopy as well as frozen-phonon calculations. Lattice anharmonicity is evidenced by pair distribution function, inelastic neutron scattering and Raman measurements. By separating the effects of thermal expansion and multi-phonon scattering, we found that the latter is very significant in high-energy optical phonon modes. The strong temperature-dependence of these phonon modes indicate the anharmonicity in this system. Moreover, our data reveals that the linewidths of high-energy optical phonons become broadened with mild doping of sulfur. Our studies suggest that the thermoelectric performance of SnSe could be further enhanced by reducing the contributions of high-energy optical phonon modes to the lattice thermal conductivity via phonon engineering.