Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Snyder, P. B.*; Aiba, Nobuyuki; Beurskens, M.*; Groebner, R. J.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kirk, A.*; et al.
Nuclear Fusion, 49(8), p.085035_1 - 085035_8, 2009/08
Times Cited Count:188 Percentile:98.80(Physics, Fluids & Plasmas)The pressure at the top of the edge transport barrier impacts fusion performance, while large ELMs can constrain material lifetimes. Investigation of intermediate wavelength MHD mode has led to improved understanding of the pedestal height and the mechanism for ELMs. The combination of high resolution diagnostics and a suite of stability codes has made edge stability analysis routine, and contribute both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.
Snyder, P. B.*; Aiba, Nobuyuki; Beurskens, M.*; Groebner, R. J.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kirk, A.*; et al.
Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10
Investigation of intermediate wavelength MHD modes has led to improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high resolution pedestal diagnostics and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard ELM regime, and for small ELM and ELM-free regimes. We further use the stability constraint on pedestal height to test models of the pedestal width, and self-consistently combine a simple width model with MHD stability calculations to develop a new predictive model (EPED1) for the pedestal height and width. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.
Kirk, A.*; Asakura, Nobuyuki; Boedo, J. A.*; Beurskens, M.*; Counsell, G. F.*; Eich, T.*; Fundamenski, W.*; Herrmann, A.*; Kamada, Yutaka; Leonard, A. W.*; et al.
Journal of Physics; Conference Series, 123, p.012011_1 - 012011_10, 2008/00
Times Cited Count:22 Percentile:97.14(Physics, Fluids & Plasmas)A comparison of the spatial and temporal evolution of the filamentary structures observed during type I ELMs is presented from a variety of diagnostics and machines. There is evidence that these filaments can be detected inside the LCFS prior to ELMs. The filaments do not have a circular cross section instead they are elongated in the perpendicular (poloidal) direction and this size appears to increase linearly with the minor radius of the machine. The filaments start rotating toroidally/poloidally with velocities close to that of the pedestal. This velocity then decreases as the filaments propagate radially. It is most likely that the filaments have at least their initial radial velocity when they are far out into the SOL. The dominant loss mechanism is through parallel transport and the transport to the wall is through the radial propagation of these filaments. Measurements of the filament energy content show that each filament contains up to 2.5 % of the energy released by the ELM.
Callen, J. D.*; Anderson, J. K.*; Arlen, T. C.*; Bateman, G.*; Budny, R. V.*; Fujita, Takaaki; Greenfield, C. M.*; Greenwald, M.*; Groebner, R. J.*; Hill, D. N.*; et al.
Nuclear Fusion, 47(11), p.1449 - 1457, 2007/11
Times Cited Count:7 Percentile:25.32(Physics, Fluids & Plasmas)no abstracts in English
Maggi, C. F.*; Groebner, R. J.*; Oyama, Naoyuki; Sartori, R.*; Horton, L. D.*; Sips, A. C. C.*; Suttrop, W.*; ASDEX Upgrade Team; Leonard, A.*; Luce, T. C.*; et al.
Nuclear Fusion, 47(7), p.535 - 551, 2007/07
Times Cited Count:63 Percentile:87.82(Physics, Fluids & Plasmas)Pedestal and global plasma parameters are compared in ELMy H-modes and improved confinement discharges from ASDEX Upgrade (AUG), DIII-D, JET and JT-60U with varying net input power. The pedestal top pressure increases moderately with power, in broad agreement with the power dependence of the H98(y,2) scaling. For all machines and all scenarios a robust correlation between the total and the pedestal thermal stored energy is observed. In AUG the improved confinement is due to improved pedestal confinement in improved H-modes with early heating and to both improved pedestal and core confinement in improved H-modes with late heating. In DIII-D the increase in confinement is due to improved confinement in the plasma core. JT-60U reversed shear H-modes have strong internal transport barriers and thus improved core performance. In all four tokamaks improved edge stability is correlated with increasing total and H98(y,2) increases with pedestal .
Loarte, A.*; Lipschultz, B.*; Kukushkin, A. S.*; Matthews, G. F.*; Stangeby, P. C.*; Asakura, Nobuyuki; Counsell, G. F.*; Federici, G.*; Kallenbach, A.*; Krieger, K.*; et al.
Nuclear Fusion, 47(6), p.S203 - S263, 2007/06
Times Cited Count:894 Percentile:96.49(Physics, Fluids & Plasmas)Progress, since the ITER Physics Basis publication (1999), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Significant progress in experiment area: energy and particle transport, the interaction of plasmas with the main chamber material elements, ELM energy deposition on material elements and the transport mechanism, the physics of plasma detachment and neutral dynamics, the erosion of low and high Z materials, their transport to the core plasma and their migration at the plasma edge, retention of tritium in fusion devices and removal methods. This progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma-materials interaction. The implications for the expected performance in ITER and the lifetime of the plasma facing materials are discussed.
Shimada, Michiya; Campbell, D. J.*; Mukhovatov, V.*; Fujiwara, Masami*; Kirneva, N.*; Lackner, K.*; Nagami, Masayuki; Pustovitov, V. D.*; Uckan, N.*; Wesley, J.*; et al.
Nuclear Fusion, 47(6), p.S1 - S17, 2007/06
Times Cited Count:784 Percentile:99.92(Physics, Fluids & Plasmas)The Progress in the ITER Physics Basis document is an update of the ITER Physics Basis (IPB), which was published in 1999. The IPB provided methodologies for projecting the performance of burning plasmas, developed largely through coordinated experimental, modeling and theoretical activities carried out on today's tokamaks (ITER Physics R&D). In the IPB, projections for ITER (1998 Design) were also presented. The IPB also pointed out some outstanding issues. These issues have been addressed by the International Tokamak Physics Activities (ITPA), which were initiated by the European Union, Japan, Russia and the U.S.A.. The new methodologies of projection and control developed through the ITPA are applied to ITER, which was redesigned under revised technical objectives, but will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy.
Maggi, C. F.*; Groebner, R. J.*; Oyama, Naoyuki; Sartori, R.*; Horton, L. D.*; Sips, A. C. C.*; Suttrop, W.*; ASDEX Upgrade Team; Leonard, T.*; Luce, T. C.*; et al.
Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03
Pedestal and global plasma parameters are compared in ELMy H-mode discharges from ASDEX Upgrade (AUG), DIII-D, JET and JT-60U. The increase in pedestal pressure (p) with power is continuous, reflecting the continuous transition from "standard H-mode" to "improved confinement scenario". In AUG improved H-modes p increases with power due to an increase of both pedestal top density and temperature. In DIII-D p increases primarily due to an increase of the pedestal temperature. In JT-60U high H-modes at = 6.5 and high the improved confinement is due to an increase of , while in reversed shear H-modes to an increase of . In JET hybrid discharges at 1.4 MA increases with power and due to an increase of . In all four tokamaks improved edge stability is correlated to increasing total and H98(y,2) increases with pedestal .
Kamada, Yutaka; Leonard, A. W.*; Bateman, G.*; Becoulet, M.*; Chang, C. S.*; Eich, T.*; Evans, T. E.*; Groebner, R. J.*; Guzdar, P. N.*; Horton, L. D.*; et al.
Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03
no abstracts in English
Leonard, A. W.*; Asakura, Nobuyuki; Boedo, J. A.*; Becoulet, M.*; Counsell, G. F.*; Eich, T.*; Fundamenski, W.*; Herrmann, A.*; Horton, L. D.*; Kamada, Yutaka; et al.
Plasma Physics and Controlled Fusion, 48(5A), p.A149 - A162, 2006/05
Times Cited Count:40 Percentile:77.23(Physics, Fluids & Plasmas)This report summarizes Type I edge localized mode (ELM) dynamics measurements from a number of tokamaks. Several transport mechanisms are conjectured to be responsible for ELM transport, including convective transport due to filamentary structures ejected from the pedestal, parallel transport due to edge ergodization or magnetic reconnection and turbulent transport driven by the high edge gradients when the radial electric field shear is suppressed. The experimental observations are assessed for their validation, or conflict, with these ELM transport conjectures.
Oyama, Naoyuki; Gohil, P.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Kamada, Yutaka; Kamiya, Kensaku; Leonard, A. W.*; Loarte, A.*; Maingi, R.*; et al.
Plasma Physics and Controlled Fusion, 48(5A), p.A171 - A181, 2006/05
Times Cited Count:87 Percentile:92.58(Physics, Fluids & Plasmas)no abstracts in English
Shimada, Michiya; Campbell, D.*; Stambaugh, R.*; Polevoi, A. R.*; Mukhovatov, V.*; Asakura, Nobuyuki; Costley, A. E.*; Donn, A. J. H.*; Doyle, E. J.*; Federici, G.*; et al.
Proceedings of 20th IAEA Fusion Energy Conference (FEC 2004) (CD-ROM), 8 Pages, 2004/11
This paper summarises recent progress in the physics basis and its impact on the expected performance of ITER. Significant progress has been made in many outstanding issues and in the development of hybrid and steady state operation scenarios, leading to increased confidence of achieving ITER's goals. Experiments show that tailoring the current profile can improve confinement over the standard H-mode and allow an increase in beta up to the no-wall limit at safety factors 4. Extrapolation to ITER suggests that at the reduced plasma current of 12MA, high Q 10 and long pulse (1000 s) operation is possible with benign ELMs. Analysis of disruption scenarios has been performed based on guidelines on current quench rates and halo currents, derived from the experimental database. With conservative assumptions, estimated electromagnetic forces on the in-vessel components are below the design target values, confirming the robustness of the ITER design against disruption forces.
Bcoulet, M.*; Huysmans, G.*; Sarazin, Y.*; Garbet, X.*; Ghendrih, P.*; Rimini, F.*; Joffrin, E.*; Litaudon, X.*; Monier-Garbet, P.*; An, J.-M.*; et al.
Plasma Physics and Controlled Fusion, 45(12A), p.A93 - A113, 2003/12
Times Cited Count:84 Percentile:90.74(Physics, Fluids & Plasmas)no abstracts in English
Loarte, A.*; Saibene, G.*; Sartori, R.*; Campbell, D.*; Becoulet, M.*; Horton, L.*; Eich, T.*; Herrmann, A.*; Matthews, G.*; Asakura, Nobuyuki; et al.
Plasma Physics and Controlled Fusion, 45(9), p.1549 - 1569, 2003/10
Times Cited Count:469 Percentile:99.70(Physics, Fluids & Plasmas)Analysis of Type I ELMs from ongoing experiments shows that ELM energy losses are correlated with the density and temperature of the pedestal plasma before the ELM crash. The Type I ELM plasma energy loss normalized to the pedestal energy is found to correlate across experiments with the collisionality of the pedestal plasma. Other parameters affect the ELM size such as the edge magnetic shear, etc, which influence the plasma volume affected by the ELMs. ELM particle losses are influenced by this ELM affected volume and are weakly dependent on other pedestal plasma parameters. In JET and DIII-D, minimum Type I ELMs with energy losses acceptable for ITER were found, that do not affect the plasma temperature. The duration of the divertor ELM power pulse is correlated with the typical ion transport time from the pedestal to the divertor target and not with the duration of the ELM associated MHD activity. Extrapolation of the present experimental results to ITER is summarized.
Loarte, A.*; Saibene, G.*; Sartori, R.*; Becoulet, M.*; Horton, L.*; Eich, T.*; Herrmann, A.*; Laux, M.*; Matthews, G.*; Jachmich, S.*; et al.
Journal of Nuclear Materials, 313-316, p.962 - 966, 2003/03
Times Cited Count:117 Percentile:98.41(Materials Science, Multidisciplinary)no abstracts in English
Asakura, Nobuyuki; Loarte, A.*; Porter, G.*; Philipps, V.*; Lipschultz, B.*; Kallenbach, A.*; Matthews, G.*; Federici, G.*; Kukushkin, A.*; Mahdavi, A.*; et al.
IAEA-CN-94/CT/P-01, 5 Pages, 2002/00
Three important physics issues for the ITER divertor design and operation are summarized based on the experimental and numerical work from multi-machine database (JET, JT-60U, ASDEX Upgrade, DIII-D, Alcator C-Mod and TEXTOR). (i) The energy load associated with Type-I ELMs is of great concern for the lifetime of the ITER divertor target. In order to understand the physics base of the scaling models, the ELM heat and particle transport to the divertor is investigated. Convective transport during ELMs plays an important role in heat transport to the divertor. (ii) Determination of the SOL flow pattern and the driving mechanism has progressed experimentally and numerically. Influences of the drift effects on the SOL and divertor plasma transport were discussed. (iii) Characteristics of chemical yield at two different deposited carbon surfaces, i.e. erosion- and redeposition-dominated areas, have been studied. Progress of understanding the chemical erosion is reviewed.
Konoshima, Shigeru; Leonard, A. W.*; Ishijima, Tatsuo*; Shimizu, Katsuhiro; Kamata, Isao*; Meyer, W. H.*; Sakurai, Shinji; Kubo, Hirotaka; Hosogane, Nobuyuki; Tamai, Hiroshi
Plasma Physics and Controlled Fusion, 43(7), p.959 - 983, 2001/07
Times Cited Count:30 Percentile:66.41(Physics, Fluids & Plasmas)no abstracts in English
Kubo, Hirotaka; Sakurai, Shinji; Asakura, Nobuyuki; Konoshima, Shigeru; Tamai, Hiroshi; Higashijima, Satoru; Sakasai, Akira; Takenaga, Hidenobu; Itami, Kiyoshi; Shimizu, Katsuhiro; et al.
Nuclear Fusion, 41(2), p.227 - 233, 2001/02
Times Cited Count:53 Percentile:80.93(Physics, Fluids & Plasmas)no abstracts in English