Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yee-Rendon, B.; Jameson, R. A.*; Okamura, Masahiro*; Li, C.*; Jiang, P.*; Maus, J. M.*
Proceedings of 32nd Linear Accelerator Conference (LINAC 2024) (Internet), p.492 - 495, 2024/10
LINACs is a simulation framework for designing optics and beam dynamics of charged particles in particle accelerators. LINACs is an open-source software that enables the user complete control over all design and simulation parameters of RFQs. This includes beam-driven design, fully 3D simulation using precise quadrupolar symmetry, and rigorous Poisson solution for external and space charge fields. The code can handle simultaneous particle beams with analytical input distributions and allows input beam scans. The software offers a relatively short running time and provides extensive analysis techniques. This work provides a historical overview of the code, presents results from RFQ models, and discusses future developments.
Smallcombe, J.; Garnsworthy, A. B.*; Korten, W.*; Singh, P.*; Muir, D.*; Prchniak, L.*; Ali, F. A.*; Andreoiu, C.*; Ansari, S.*; Ball, G. C.*; et al.
Physical Review C, 110(2), p.024318_1 - 024318_16, 2024/08
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Li, P. J.*; Utsuno, Yutaka; Yoshida, Kazuki; 85 of others*
Physics Letters B, 855, p.138828_1 - 138828_11, 2024/08
Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)Zhang, Z.*; Hattori, Takanori; Song, R.*; Yu, D.*; Mole, R.*; Chen, J.*; He, L.*; Zhang, Z.*; Li, B.*
Journal of Applied Physics, 136(3), p.035105_1 - 035105_8, 2024/07
Times Cited Count:0 Percentile:0.00(Physics, Applied)Solid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF) and sodium hexafluoroarsenate (NaAsF) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF is a rhombohedral structure with space group R and NaAsF, i.e., F, E, and A. The phase transition temperature varies with pressure at a rate of dT/dP = 250 and 310 K/GPa for NaPF and NaAsF. The pressure-induced entropy changes of NaPF and NaAsF are determined to be around 45.2 and 35.6J kgK, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions.
Rhm, W.*; Ban, Nobuhiko*; Chen, J.*; Li, C.*; Dobynde, M.*; Durante, M.*; El-Jaby, S.*; Komiyama, Tatsuto*; Ozasa, Kotaro*; Sato, Tatsuhiko; et al.
Journal of Medical Physics - Zeitschrift fr medizinische Physik -, 34(1), p.4 - 13, 2024/02
Times Cited Count:0 Percentile:0.00(Radiology, Nuclear Medicine & Medical Imaging)The International Commission on Radiological Protection (ICRP) provides independent recommendations on radiological protection for the public benefit. For more than 90 years, the ICRP System of Radiological Protection has been guiding the development and implementation of national and international standards and regulations on radiological protection. In 2019, ICRP established Task Group (TG) 115 to address a broader range of topics related to dose and risk assessment for radiological protection of astronauts. This paper gives an overview of the System of Radiological Protection and a brief summary of ICRP's work on radiological protection of astronauts.
Shavers, M. R.*; Semones, E. J.*; Shurshakov, V.*; Dobynde, M.*; Sato, Tatsuhiko; Komiyama, Tatsuto*; Tomi, L.*; Chen, J.*; El-Jaby, S.*; Straube, U.*; et al.
Journal of Medical Physics - Zeitschrift fr medizinische Physik -, 34(1), p.31 - 43, 2024/02
Times Cited Count:0 Percentile:0.00(Radiology, Nuclear Medicine & Medical Imaging)The Partner Agencies of the International Space Station (ISS) present an intracomparison of the ionizing radiation absorbed dose and risk quantities used to characterize example mission lunar space. The results and the work itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report
Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; Shimada, Kenya*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.
Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12
Times Cited Count:6 Percentile:84.64(Physics, Multidisciplinary)Braby, L. A.*; Conte, V.*; Dingfelder, M.*; Goodhead, D. T.*; Pinsky, L. S.*; Rosenfeld, A. B.*; Sato, Tatsuhiko; Waker, A. J.*; Guatelli, S.*; Magrin, G.*; et al.
Journal of ICRU, 23(1), p.1 - 168, 2023/12
This report provides a comprehensive description of the basic concepts and theories, computational and experimental procedures, and applications of microdosimetry.
Tamii, Atsushi*; Pellegri, L.*; Sderstrm, P.-A.*; Allard, D.*; Goriely, S.*; Inakura, Tsunenori*; Khan, E.*; Kido, Eiji*; Kimura, Masaaki*; Litvinova, E.*; et al.
European Physical Journal A, 59(9), p.208_1 - 208_21, 2023/09
Times Cited Count:3 Percentile:75.57(Physics, Nuclear)no abstracts in English
Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:18 Percentile:95.53(Multidisciplinary Sciences)no abstracts in English
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Times Cited Count:3 Percentile:75.57(Astronomy & Astrophysics)Detailed -ray spectroscopy of the exotic neon isotope Ne has been performed using the one-neutron removal reaction from Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Huang, M.-Z.*; Mohan, J.*; Visuri, A.-M.*; Fabritius, P.*; Talebi, M.*; Wili, S.*; Uchino, Shun; Giamarchi, T.*; Esslinger, T.*
Physical Review Letters, 130(20), p.200404_1 - 200404_8, 2023/05
Times Cited Count:9 Percentile:89.52(Physics, Multidisciplinary)We measure superfluid transport of strongly-interacting fermionic lithium atoms through a quantum point contact with local, spin-dependent particle loss. We observe that the characteristic non-Ohmic superfluid transport enabled by high-order multiple Andreev reflections transitions into an excess Ohmic current as the dissipation strength exceeds the superfluid gap. We develop a model with mean-field reservoirs connected via tunneling to a dissipative site. Our calculations in the Keldysh formalism reproduce the observed non-equilibrium particle current, yet do not fully explain the observed loss rate or spin current.
Revel, A.*; Wu, J.*; Iwasaki, Hironori*; Ash, J.*; Bazin, D.*; Brown, B. A.*; Chen, J.*; Elder, R.*; Farris, P.*; Gade, A.*; et al.
Physics Letters B, 838, p.137704_1 - 137704_7, 2023/03
Times Cited Count:3 Percentile:75.57(Astronomy & Astrophysics)no abstracts in English
Zhang, H.*; Wu, S. C.*; Ao, N.*; Zhang, J. W.*; Li, H.*; Zhou, L.*; Xu, P. G.; Su, Y. H.
International Journal of Fatigue, 166, p.107296_1 - 107296_11, 2023/01
Times Cited Count:12 Percentile:82.28(Engineering, Mechanical)Zheng, R.*; Gong, W.; Du, J.-P.*; Gao, S.*; Liu, M.*; Li, G.*; Kawasaki, Takuro; Harjo, S.; Ma, C.*; Ogata, Shigenobu*; et al.
Acta Materialia, 238, p.118243_1 - 118243_15, 2022/10
Times Cited Count:31 Percentile:96.96(Materials Science, Multidisciplinary)Aoki, Dai*; Sakai, Hironori; Opletal, P.; Tokiwa, Yoshifumi; Ishizuka, Jun*; Yanase, Yoichi*; Harima, Hisatomo*; Nakamura, Ai*; Li, D.*; Homma, Yoshiya*; et al.
Journal of the Physical Society of Japan, 91(8), p.083704_1 - 083704_5, 2022/08
Times Cited Count:44 Percentile:97.97(Physics, Multidisciplinary)Smallcombe, J.; Garnsworthy, A. B.*; Korten, W.*; Singh, P.*; Ali, F. A.*; Andreoiu, C.*; Ansari, S.*; Ball, G. C.*; Barton, C. J.*; Bhattacharjee, S. S.*; et al.
Physical Review C, 106(1), p.014312_1 - 014312_9, 2022/07
Times Cited Count:5 Percentile:70.77(Physics, Nuclear)Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Huang, H.*; Li, Z. H.*; Li, J. G.*; Guo, C. Y.*; 34 of others*
Physics Letters B, 829, p.137129_1 - 137129_7, 2022/06
Times Cited Count:6 Percentile:76.40(Astronomy & Astrophysics)Welton, R.*; Bollinger, D.*; Dehnel, M.*; Draganic, I.*; Faircloth, D.*; Han, B.*; Lettry, J.*; Stockli, M.*; Tarvainen, O.*; Ueno, Akira
Journal of Physics; Conference Series, 2244, p.012045_1 - 012045_13, 2022/04
Times Cited Count:4 Percentile:94.66(Engineering, Electrical & Electronic)High brightness, negative hydrogen ion sources are used extensively in many scientific facilities operating worldwide. Negative hydrogen beams have become the preferred means of filling circular accelerators and storage rings. Several facilities now have long-term ( several years) experience with operating a variety of these sources (RF, filament, magnetron and penning) and have encountered, and in some cases solved, performance limiting issues. A representative list of such facilities includes, the US Spallation Neutron Source (SNS), Japan Proton Accelerator Complex (J-PARC), Rutherford Appleton Laboratory (RAL-ISIS), Los Alamos Neutron Science Center (LANSCE), Fermi National Accelerator Laboratory (FNAL), CERN LINAC-4 and numerous installations of D-Pace ion sources. This report summarizes key ion source sustainability issues encountered at these facilities and discusses how some of them are being addressed through recent source improvements.
Xia, C.-J.*; Sun, B. Y.*; Maruyama, Toshiki; Lon, W.-H.*; Li, A.*
Physical Review C, 105(4), p.045803_1 - 045803_14, 2022/04
Times Cited Count:10 Percentile:88.75(Physics, Nuclear)