Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.
Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02
Times Cited Count:0Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.
Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07
Times Cited Count:2 Percentile:87.51(Materials Science, Multidisciplinary)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
Times Cited Count:1 Percentile:79.23(Physics, Nuclear)no abstracts in English
Li, C.*; Fang, W.*; Yu, H. Y.*; Peng, T.*; Yao, Z. T.*; Liu, W. G.*; Zhang, X.*; Xu, P. G.; Yin, F.*
Materials Science & Engineering A, 892, p.146096_1 - 146096_11, 2024/02
Times Cited Count:1 Percentile:71.29(Nanoscience & Nanotechnology)Braby, L. A.*; Conte, V.*; Dingfelder, M.*; Goodhead, D. T.*; Pinsky, L. S.*; Rosenfeld, A. B.*; Sato, Tatsuhiko; Waker, A. J.*; Guatelli, S.*; Magrin, G.*; et al.
Journal of ICRU, 23(1), p.1 - 168, 2023/12
This report provides a comprehensive description of the basic concepts and theories, computational and experimental procedures, and applications of microdosimetry.
Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.
Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11
Times Cited Count:6 Percentile:75.19(Physics, Multidisciplinary)The cluster structure of the neutron-rich isotope Be has been probed via the () reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-Rpke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the Be ground-state as a rather compact nuclear molecule.
Tamii, Atsushi*; Pellegri, L.*; Sderstrm, P.-A.*; Allard, D.*; Goriely, S.*; Inakura, Tsunenori*; Khan, E.*; Kido, Eiji*; Kimura, Masaaki*; Litvinova, E.*; et al.
European Physical Journal A, 59(9), p.208_1 - 208_21, 2023/09
Times Cited Count:3 Percentile:75.57(Physics, Nuclear)no abstracts in English
Bao, S.*; Gu, Z.-L.*; Shangguan, Y.*; Huang, Z.*; Liao, J.*; Zhao, X.*; Zhang, B.*; Dong, Z.-Y.*; Wang, W.*; Kajimoto, Ryoichi; et al.
Nature Communications (Internet), 14, p.6093_1 - 6093_9, 2023/09
Times Cited Count:12 Percentile:92.34(Multidisciplinary Sciences)Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:18 Percentile:95.53(Multidisciplinary Sciences)no abstracts in English
Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Times Cited Count:6 Percentile:87.68(Astronomy & Astrophysics)Gamma decays were observed in Ca and Ca following quasi-free one-proton knockout reactions from Sc. For Ca, a ray transition was measured to be 1456(12) keV, while for Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the and orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic Ca and potentially drives the dripline of Ca isotopes to Ca or even beyond.
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Times Cited Count:3 Percentile:75.57(Astronomy & Astrophysics)Detailed -ray spectroscopy of the exotic neon isotope Ne has been performed using the one-neutron removal reaction from Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Huang, M.-Z.*; Mohan, J.*; Visuri, A.-M.*; Fabritius, P.*; Talebi, M.*; Wili, S.*; Uchino, Shun; Giamarchi, T.*; Esslinger, T.*
Physical Review Letters, 130(20), p.200404_1 - 200404_8, 2023/05
Times Cited Count:9 Percentile:89.52(Physics, Multidisciplinary)We measure superfluid transport of strongly-interacting fermionic lithium atoms through a quantum point contact with local, spin-dependent particle loss. We observe that the characteristic non-Ohmic superfluid transport enabled by high-order multiple Andreev reflections transitions into an excess Ohmic current as the dissipation strength exceeds the superfluid gap. We develop a model with mean-field reservoirs connected via tunneling to a dissipative site. Our calculations in the Keldysh formalism reproduce the observed non-equilibrium particle current, yet do not fully explain the observed loss rate or spin current.
Pohl, T.*; Sun, Y. L.*; Obertelli, A.*; Lee, J.*; Gmez-Ramos, M.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Cai, B. S.*; Yuan, C. X.*; Brown, B. A.*; et al.
Physical Review Letters, 130(17), p.172501_1 - 172501_8, 2023/04
Times Cited Count:7 Percentile:87.40(Physics, Multidisciplinary)We report on the first proton-induced single proton- and neutron-removal reactions from the neutron deficient O nucleus with large Fermi-surface asymmetry at 100 MeV/nucleon. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively.
Revel, A.*; Wu, J.*; Iwasaki, Hironori*; Ash, J.*; Bazin, D.*; Brown, B. A.*; Chen, J.*; Elder, R.*; Farris, P.*; Gade, A.*; et al.
Physics Letters B, 838, p.137704_1 - 137704_7, 2023/03
Times Cited Count:3 Percentile:75.57(Astronomy & Astrophysics)no abstracts in English
Wu, P.*; Murai, Naoki; Li, T.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Nakajima, Kenji; Xia, K.*; Peng, K.*; Zhang, Y.*; et al.
New Journal of Physics (Internet), 25(1), p.013032_1 - 013032_11, 2023/01
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Orlandi, R.; Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Asai, Masato; Tsukada, Kazuaki; Sato, Tetsuya; Ito, Yuta; Suzaki, Fumi; Nagame, Yuichiro*; et al.
Physical Review C, 106(6), p.064301_1 - 064301_11, 2022/12
Times Cited Count:3 Percentile:52.30(Physics, Nuclear)Elekes, Z.*; Juhsz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12
Times Cited Count:2 Percentile:39.49(Physics, Nuclear)The low-lying level structure of V and V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for V while the neutron knock-out reaction provided the data for V. Four and five new transitions were determined for V and V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2 and 9/2 levels. The (,) excitation cross sections for V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation, V could not be unambiguously placed on the island of inversion.
Enciu, M.*; Liu, H. N.*; Obertelli, A.*; Doornenbal, P.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review Letters, 129(26), p.262501_1 - 262501_7, 2022/12
Times Cited Count:12 Percentile:84.09(Physics, Multidisciplinary)The one-neutron knockout from Ca was performed at 230 MeV/nucleon combined with prompt spectroscopy. The momentum distributions corresponding to the removal of and neutrons were measured. The cross sections are consistent with a shell closure at the neutron number , found as strong as at and in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron and orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.
Xie, T.*; Liu, C.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Li, S.*; Luo, H.*
Journal of Physics; Condensed Matter, 34(47), p.474001_1 - 474001_8, 2022/11
Times Cited Count:0 Percentile:0.00(Physics, Condensed Matter)Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda, M.*; et al.
Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05