Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 467

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy

Li, L.*; Miyamoto, Goro*; Zhang, Y.*; Li, M.*; Morooka, Satoshi; Oikawa, Katsunari*; Tomota, Yo*; Furuhara, Tadashi*

Journal of Materials Science & Technology, 184, p.221 - 234, 2024/06

Journal Articles

Crystal-liquid duality driven ultralow two-channel thermal conductivity in $$alpha$$-MgAgSb

Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; Kofu, Maiko; Nakajima, Kenji; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.

Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03

Journal Articles

The BCC $$rightarrow$$ FCC hierarchical martensite transformation under dynamic impact in FeMnAlNiTi alloy

Li, C.*; Fang, W.*; Yu, H. Y.*; Peng, T.*; Yao, Z. T.*; Liu, W. G.*; Zhang, X.*; Xu, P. G.; Yin, F.*

Materials Science & Engineering A, 892, p.146096_1 - 146096_11, 2024/02

Journal Articles

Microscopic origin of the spin-reorientation transition in the kagome topological magnet TbMn$$_{6}$$Sn$$_{6}$$

Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Deng, G.*; et al.

Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01

Journal Articles

Investigation on damage evaluation index with ductility factor based on simulation analysis for loading test of piping support structure

Okuda, Yukihiko; Takito, Kiyotaka; Nishida, Akemi; Li, Y.

Mechanical Engineering Journal (Internet), 12 Pages, 2024/00

After the Great East Japan earthquake and the accident at the TEPCO's Fukushima Daiichi Nuclear Power Stations in March 2011, the regulation for nuclear power plants (NPPs) has been enhanced to take countermeasures against beyond-design-basis events. To improve the seismic safety of nuclear facilities against earthquakes that exceed the design input ground motion, the importance of seismic probabilistic risk assessment (PRA) has drawn much attention. It is essential to evaluate the realistic seismic response of the equipment and piping in NPPs for fragility assessment in seismic PRA. In particular, since piping systems have plant-specific complex route geometries, it is known that the arrangement and stiffness of piping support structures have a significant impact on seismic response characteristics of the entire piping system. To construct a realistic seismic response analysis method for excessive input ground motion exceeding the elastic response, it is desired to develop an elastic-plastic response analysis method that can estimate the realistic response of piping systems including pipe support structures. In this study, the applicability of the method is confirmed by the simulation analysis of the elasto-plastic response for the piping support structure loading test previously reported. Moreover, based on the good correlation between the ductility factor and the damage status obtained from the test results and simulation analysis results, it is shown that the ductility factor is effective as a damage evaluation index for piping support structures.

Journal Articles

PANDORA Project for the study of photonuclear reactions below $$A=60$$

Tamii, Atsushi*; Pellegri, L.*; S$"o$derstr$"o$m, P.-A.*; Allard, D.*; Goriely, S.*; Inakura, Tsunenori*; Khan, E.*; Kido, Eiji*; Kimura, Masaaki*; Litvinova, E.*; et al.

European Physical Journal A, 59(9), p.208_1 - 208_21, 2023/09

no abstracts in English

Journal Articles

Direct observation of topological magnon polarons in a multiferroic material

Bao, S.*; Gu, Z.-L.*; Shangguan, Y.*; Huang, Z.*; Liao, J.*; Zhao, X.*; Zhang, B.*; Dong, Z.-Y.*; Wang, W.*; Kajimoto, Ryoichi; et al.

Nature Communications (Internet), 14, p.6093_1 - 6093_9, 2023/09

Journal Articles

Characteristics of allowable axial cracks for pressurized pipes governed by limit load criteria

Hasegawa, Kunio; Li, Y.; Udyawar, A.*; Lacroix, V.*

International Journal of Pressure Vessels and Piping, 204, p.104952_1 - 104952_7, 2023/08

 Times Cited Count:0 Percentile:0(Engineering, Multidisciplinary)

When axial cracks were detected in pipes, failure stresses for high toughness pipes are estimated using the Limit Load Criteria. The allowable stresses for the cracked pipes are derived from the combination of the failure stresses and safety factors. The allowable sizes of crack depths and lengths are determined from the allowable stresses. From the comparison of the allowable and failure stresses for through-wall cracks, the allowable cracks are not uniform. They can be separated into three different characteristics, i) leak-before-break (LBB) and crack growth stability, ii) non-LBB and crack growth stability and iii) non-LBB and crack growth instability. Inspectors and users should pay special attention to allowable cracks with the third characteristic to prevent unexpected failure, particularly for thin-wall pipes. The allowable crack depths and lengths that require special attention can be expressed by appropriate equations.

Journal Articles

Analytical study for low ground contact ratio of buildings due to the basemat uplift using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Shiomi, Tadahiko; Kawata, Manabu; Li, Y.; Ota, Akira*; Sonobe, Hideaki*; Ino, Susumu*; Ugata, Takeshi*

Mechanical Engineering Journal (Internet), 10(4), p.23-00026_1 - 23-00026_11, 2023/08

In the seismic evaluation of nuclear facility buildings, basemat uplift-the phenomenon during which the bottom of the basemat of a building partially rises from the ground owing to overturning moments during earthquakes-is a very important aspect because it affects not only structural strength and integrity, but also the response of equipment installed in the building. However, there are not enough analytical studies on the behavior of buildings with a low ground contact ratio due to basemat uplift during earthquakes. In this study, we conducted a simulation using a three-dimensional finite element model from past experiments on basemat uplift; further, we confirmed the validity of this approach. In order to confirm the difference in the analytical results depending on the analysis code, the simulation was performed under the same analytical conditions using the three analysis codes, which are E-FrontISTR, FINAS/STAR and TDAPIII, and the obtained analysis results were compared. Accordingly, we investigated the influence of the difference in adhesion on the structural response at low ground contact ratio. In addition, we confirmed the effects of significant analysis parameters on the structural response via sensitivity analysis. In this paper, we report the analytical results and insights obtained from these investigations.

Journal Articles

Verification of probabilistic fracture mechanics analysis code PASCAL for reactor pressure vessel

Lu, K.; Takamizawa, Hisashi; Li, Y.; Masaki, Koichi*; Takagoshi, Daiki*; Nagai, Masaki*; Nannichi, Takashi*; Murakami, Kenta*; Kanto, Yasuhiro*; Yashirodai, Kenji*; et al.

Mechanical Engineering Journal (Internet), 10(4), p.22-00484_1 - 22-00484_13, 2023/08

Journal Articles

Level structures of $$^{56,58}$$Ca cast doubt on a doubly magic $$^{60}$$Ca

Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.

Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08

Gamma decays were observed in $$^{56}$$Ca and $$^{58}$$Ca following quasi-free one-proton knockout reactions from $$^{57,59}$$Sc. For $$^{56}$$Ca, a $$gamma$$ ray transition was measured to be 1456(12) keV, while for $$^{58}$$Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the $$2^{+}_{1} rightarrow 0^{+}_{gs}$$ decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for $$2^{+}_{1}$$ level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the $$0_{f5/2}$$ and $$0_{g9/2}$$ orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic $$^{60}$$Ca and potentially drives the dripline of Ca isotopes to $$^{70}$$Ca or even beyond.

Journal Articles

Effect of inner wall cracking on the cavitation bubble formation in the mercury spallation target at J-PARC

Ariyoshi, Gen; Saruta, Koichi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Maeno, Koki*; Li, Y.*; Tsutsui, Kihei*

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.1407 - 1420, 2023/08

Cavitation damage on a target vessel due to proton beam-induced pressure waves is one of the crucial issues for the pulsed neutron source using a mercury spallation target. As a mitigation technique for the damage, the helium microbubble injection into the mercury has been carried out by using a swirl bubbler in order to utilize compressibility of bubbles. Moreover, double-walled structure, which consists of an outer wall and an inner wall, has been applied as the target head structure. In this study, we aim to develop an abnormality diagnostic technology to detect the inner wall cracking, which is caused by such cavitation damage, from the outside of the target vessel. The mercury flow fields in the case with the cracking are evaluated by computational fluid dynamics analysis based on finite element method. And then, effect of the cracking on the flow field is discussed from the point of view of the flow-induced vibration and the acoustic vibration.

Journal Articles

${it In situ}$ neutron diffraction study on the deformation behavior of the plastic inorganic semiconductor Ag$$_{2}$$S

Wang, Y.*; Gong, W.; Kawasaki, Takuro; Harjo, S.; Zhang, K.*; Zhang, Z. D.*; Li, B.*

Applied Physics Letters, 123(1), p.011903_1 - 011903_6, 2023/07

 Times Cited Count:0 Percentile:0

Journal Articles

The Development of a Multiphysics Coupled Solver for Studying the Effect of Dynamic Heterogeneous Configuration on Particulate Debris Bed Criticality and Cooling Characteristics

Li, C.-Y.; Wang, K.*; Uchibori, Akihiro; Okano, Yasushi; Pellegrini, M.*; Erkan, N.*; Takata, Takashi*; Okamoto, Koji*

Applied Sciences (Internet), 13(13), p.7705_1 - 7705_29, 2023/07

 Times Cited Count:0 Percentile:0

Journal Articles

Development of seismic response analysis method of piping system; Proposal of the nonlinear spring model for piping support structures

Takito, Kiyotaka; Okuda, Yukihiko; Nishida, Akemi; Li, Y.

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 10 Pages, 2023/07

In probabilistic risk assessment against earthquakes (seismic PRA) for nuclear power plants, the development of a realistic response analysis method for the fragility assessment of piping systems considering input seismic motions exceeding design assumptions is one of the important issues. Usually, piping systems exhibit complex three-dimensional shapes. The arrangement and stiffness of the piping support structures significantly affect the response characteristics of the entire piping system. Therefore, it is necessary to develop a realistic response analysis method of piping systems including piping support structures. In this study, a method for modeling the elasto-plastic hysteresis characteristics of piping support structures is developed to establish a seismic response analysis method of piping systems including piping support structures. First, we formulate an elatsto-plastic spring model that can express the elasto-plastic hysteresis characteristics of a piping support structure. Subsequently, we perform a simulation analysis for the loading test of a piping support structure using this model. As the analysis results and test results were in good agreement, we confirmed the effectiveness of the formulation of the model. The main contents, such as the formulation of the elasto-plastic spring model, the simulation analysis of the loading test, and the comparison between the analysis results and the test results, and the results of this study are reported in this paper.

Journal Articles

Modeling of hardness and welding residual stress in Type 316 stainless steel components for the assessment of stress corrosion cracking

Li, S.; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.; Deng, D.*

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 7 Pages, 2023/07

Journal Articles

Development of stress intensity factor solution for surface crack at nozzle corner in reactor pressure vessel

Yamaguchi, Yoshihito; Takamizawa, Hisashi; Katsuyama, Jinya; Li, Y.

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 9 Pages, 2023/07

The stress intensity factor (SIF) for crack at nozzle corner is a key parameter in structural integrity assessment of nozzle in reactor pressure vessel (RPV). Although various SIF solutions for surface cracks at nozzle corners have been proposed, most of them are only focusing on the deepest point of the crack, and the information about geometric dimension of the nozzle corner is not clear. According to the previous fatigue test results regarding the surface crack at the nozzle corner, the amounts of crack growth at the surface points were larger than that at the deepest point of the crack. Such results imply that SIFs at the surface points may be higher than that at the deepest point. To increase the reliability of the structural integrity assessment, it is necessary to provide SIF solutions for both surface and deepest points. In this study, SIF solutions for two surface points and the deepest point of surface crack at nozzle corners are developed through finite element analyses and the solutions are provided corresponding to the geometric dimensions of nozzle corner and crack size.

Journal Articles

Deformation mechanism of a strong and ductile maraging steel investigated using ${it in situ}$ X-ray synchrotron diffraction

Li, H.*; Liu, Y.*; Zhao, W.*; Liu, B.*; Tominaga, Aki; Shobu, Takahisa; Wei, D.*

International Journal of Plasticity, 165, p.103612_1 - 103612_20, 2023/06

 Times Cited Count:0 Percentile:67.19(Engineering, Mechanical)

In order to clarify the strength properties of Co-free maraging steel, ${it in situ}$ tensile experiment using high energy synchrotron X-ray diffraction was performed. Diffraction profiles from the martensitic and austenitic phases were obtained, and their strength and width were observed to vary as loading. Analysis of the diffraction profiles showed that the content of martensite in the as-aged material decreased slowly at low stress levels and decreased rapidly at high stress levels. On the other hand, the austenite phase in the as-solution materials was significantly transformed the martensite phase as the stress increased. It was clarified to be responsible for their respective strength properties.

Journal Articles

Experimental study on scabbing limit of local damage to reinforced concrete panels subjected to oblique impact by projectile with semispherical nose

Okuda, Yukihiko; Kang, Z.; Nishida, Akemi; Tsubota, Haruji; Li, Y.

Mechanical Engineering Journal (Internet), 10(3), p.22-00370_1 - 22-00370_12, 2023/06

Many experimental studies have been reported on the impact resistance of reinforced concrete (RC) structures. However, most formulas were derived from impact tests based on normal impact to target structures using rigid projectiles that do not deform during impact. Therefore, this study develops a local damage evaluation method considering the rigidity of projectiles and oblique impacts that should be considered in realistic projectile impact phenomena. Specifically, we focused on scabbing, defined as the peeling off the back face of the target opposite the impact face, and conducted impact tests on RC panels to clarify the scabbing limit by changing the impact velocity in an oblique impact. The effects of the projectile rigidity and oblique impact on the scabbing limit were investigated based on the test results. This work presents the test conditions, equipment, results, and the scabbing limit on the local damage to RC panels subjected to oblique impacts.

Journal Articles

Outcomes of WPEC SG47 on "Use of Shielding Integral Benchmark Archive and Database for Nuclear Data Validation"

Kodeli, I. A.*; Fleming, M.*; Cabellos, O.*; Leal, L.*; Celik, Y.*; Ding, Y.*; Jansky, B.*; Neudecker, D.*; Novak, E.*; Simakov, S.*; et al.

EPJ Web of Conferences, 284, p.15002_1 - 15002_8, 2023/05

Working Party on International Nuclear Data Evaluation Co-operation Subgroup 47 (WPEC SG47) entitled "Use of Shielding Integral Benchmark Archive and Database for Nuclear Data Validation" was started in June 2019 with the objectives to promote more systematic and wider use of shielding benchmark experiments in nuclear data and transport code validation and development, to provide feedback on the Shielding Integral Benchmark Archive and Database (SINBAD). Complementing the database with new features was discussed, for example providing the nuclear data sensitivity profiles more systematically would facilitate and better guide the use of data, and the information on the geometry, (radiation source) and materials is expected to allow an easier and less error prone computational model preparation for different transport codes. Examples of the use and some views on future development of the SINBAD benchmark database will be presented in the paper.

467 (Records 1-20 displayed on this page)