Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 306

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Improvements on evaluation functions of a probabilistic fracture mechanics analysis code for reactor pressure vessels

Lu, K.; Katsuyama, Jinya; Li, Y.

Journal of Pressure Vessel Technology, 142(2), p.021208_1 - 021208_11, 2020/04

Journal Articles

Restoration of the natural $$E(1/2^+_1)-E(3/2^+_1)$$ energy splitting in odd-K isotopes towards $$N=40$$

Sun, Y. L.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Chazono, Yoshiki*; Duguet, T.*; Liu, H. N.*; Navr$'a$til, P.*; Nowacki, F.*; Ogata, Kazuyuki*; et al.

Physics Letters B, 802, p.135215_1 - 135215_7, 2020/03

no abstracts in English

Journal Articles

Strong local moment antiferromagnetic spin fluctuations in V-doped LiFeAs

Xu, Z.*; Dai, G.*; Li, Y.*; Yin, Z.*; Rong, Y.*; Tian, L.*; Liu, P.*; Wang, H.*; Xing, L.*; Wei, Y.*; et al.

npj Quantum Materials (Internet), 5(1), p.11_1 - 11_7, 2020/02

 Times Cited Count:0 Percentile:100(Materials Science, Multidisciplinary)

Journal Articles

A New probabilistic evaluation model for weld residual stress

Mano, Akihiro; Katsuyama, Jinya; Miyamoto, Yuhei*; Yamaguchi, Yoshihito; Li, Y.

International Journal of Pressure Vessels and Piping, 179, p.103945_1 - 103945_6, 2020/01

Weld residual stress (WRS) is one of the most important factors in the structural integrity assessment of piping welds, and it is considered a driving force for crack growth. It is characterized by large uncertainty. For more rational assessment, it is important to consider the uncertainty of WRS for evaluating crack growth behavior in probabilistic fracture mechanics (PFM) analysis. In existing PFM analysis codes, WRS uncertainty is set by statistically processing the results of multiple finite element analyses. This process depends on the individual performing PFM analysis, which may lead to uncertainties whose sources would be different from the original WRS. In this study, we developed a new WRS evaluation model based on Fourier transformation, and the model was incorporated into PASCAL-SP, which has been developed by Japan Atomic Energy Agency. Through improvements to the code, WRS uncertainty can be considered automatically and appropriately by inputting multiple WRS analysis results directly as input data for PFM analysis.

Journal Articles

Shell evolution of $$N$$ = 40 isotones towards $$^{60}$$Ca: First spectroscopy of $$^{62}$$Ti

Cort$'e$s, M. L.*; Rodriguez, W.*; Doornenbal, P.*; Obertelli, A.*; Holt, J. D.*; Lenzi, S. M.*; Men$'e$ndez, J.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; et al.

Physics Letters B, 800, p.135071_1 - 135071_7, 2020/01

 Times Cited Count:0 Percentile:100(Astronomy & Astrophysics)

Excited states in the $$N$$ = 40 isotone $$^{62}$$Ti were populated via the $$^{63}$$V($$p$$,$$2p$$)$$^{62}$$Ti reaction at $$sim$$200 MeV/nucleon at the Radioactive Isotope Beam Factory and studied using $$gamma$$-ray spectroscopy. The energies of the $$2_1^+ rightarrow 0_{rm gs}^+$$ and $$4_1^+ rightarrow 2_1^+$$ transitions, observed here for the first time, indicate a deformed Ti ground state. These energies are increased compared to the neighboring $$^{64}$$Cr and $$^{66}$$Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings.

Journal Articles

Fine structure in the $$alpha$$ decay of $$^{223}$$U

Sun, M. D.*; Liu, Z.*; Huang, T. H.*; Zhang, W. Q.*; Andreyev, A. N.; Ding, B.*; Wang, J. G.*; Liu, X. Y.*; Lu, H. Y.*; Hou, D. S.*; et al.

Physics Letters B, 800, p.135096_1 - 135096_5, 2020/01

 Times Cited Count:1 Percentile:100(Astronomy & Astrophysics)

Journal Articles

GPU acceleration of communication avoiding Chebyshev basis conjugate gradient solver for multiphase CFD simulations

Ali, Y.*; Onodera, Naoyuki; Idomura, Yasuhiro; Ina, Takuya*; Imamura, Toshiyuki*

Proceedings of 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2019), p.1 - 8, 2019/11

Iterative methods for solving large linear systems are common parts of computational fluid dynamics (CFD) codes. The Preconditioned Conjugate Gradient (P-CG) method is one of the most widely used iterative methods. However, in the P-CG method, global collective communication is a crucial bottleneck especially on accelerated computing platforms. To resolve this issue, communication avoiding (CA) variants of the P-CG method are becoming increasingly important. In this paper, the P-CG and Preconditioned Chebyshev Basis CA CG (P-CBCG) solvers in the multiphase CFD code JUPITER are ported to the latest V100 GPUs. All GPU kernels are highly optimized to achieve about 90% of the roofline performance, the block Jacobi preconditioner is re-designed to extract high computing power of GPUs, and the remaining bottleneck of halo data communication is avoided by overlapping communication and computation. The overall performance of the P-CG and P-CBCG solvers is determined by the competition between the CA properties of the global collective communication and the halo data communication, indicating an importance of the inter-node interconnect bandwidth per GPU. The developed GPU solvers are accelerated up to 2x compared with the former CPU solvers on KNLs, and excellent strong scaling is achieved up to 7,680 GPUs on the Summit.

Journal Articles

Comparison of heavy-ion transport simulations; Collision integral with pions and $$Delta$$ resonances in a box

Ono, Akira*; Xu, J.*; Colonna, M.*; Danielewicz, P.*; Ko, C. M.*; Tsang, M. B.*; Wang, Y,-J.*; Wolter, H.*; Zhang, Y.-X.*; Chen, L.-W.*; et al.

Physical Review C, 100(4), p.044617_1 - 044617_35, 2019/10

 Times Cited Count:2 Percentile:36.86(Physics, Nuclear)

International comparison of heavy-ion induced reaction models were discussed in the international conference "Transport2017" held in April 2017. Owing to their importance for safety assessment of heavy-ion accelerators and dosimetry of astronauts, various models to simulate heavy-ion induced reaction models are developed. This study is intended to clarify the difference among them to pinpoint their problems. In the comparison study, 320 protons and neutrons were packed in a 20-fm-large cube to calculate the number and energies of collisions during the time evolution. The author contributed to this study by running calculation using JQMD (JAERI Quantum Molecular Dynamics). This study showed that time step in the calculation is one of the biggest causes of the discrepancies. For example, the calculation by JQMD comprises 1-fm/c time steps, each of which is composed of transport, scattering and decay phases. Therefore a sequence of scattering, and decay followed by another scattering in 1 fm/c cannot be considered. Moreover, in JQMD particles are labeled by sequential numbers and scattering reactions are simulated by the order. Therefore scattering between low ID numbers, that between high ID numbers and that between the first (low ID) pair is overlooked in JQMD. Above indications obtained in this study must be kept in our mind for future JQMD upgrades.

Journal Articles

Quasifree neutron knockout from $$^{54}$$Ca corroborates arising $$N=34$$ neutron magic number

Chen, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Chazono, Yoshiki*; Navr$'a$til, P.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Raimondi, F.*; et al.

Physical Review Letters, 123(14), p.142501_1 - 142501_7, 2019/10

 Times Cited Count:2 Percentile:19.51(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Evaluation of local damage to reinforced concrete panels subjected to oblique impact by soft missile

Nishida, Akemi; Kang, Z.; Nagai, Minoru*; Tsubota, Haruji; Li, Y.

Nuclear Engineering and Design, 350, p.116 - 127, 2019/08

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Many empirical formulas have been proposed for evaluating local damage to reinforced concrete structures caused by impacts of rigid missiles. Most of these formulas have been derived based on tests involving impact normal to target structures. Thus far, few tests with oblique impact onto target structures have been carried out. As a final goal of this research, we aim to propose a new formula for evaluating the local damage caused by oblique impact based on previous experimental and simulation results. In this study, we perform simulation analyses for evaluating the local damage to reinforced concrete panels subjected to oblique impacts with various angle by soft missiles under various impact velocities using a simulation method that was validated using the results of previous impact experiments. In this paper, the investigated results and obtained knowledges from them are shown.

Journal Articles

First measurements of absolute branching fractions of the $$Xi_c^+$$ baryon at Belle

Li, Y. B.*; Tanida, Kiyoshi; Belle Collaboration*; 194 of others*

Physical Review D, 100(3), p.031101_1 - 031101_8, 2019/08

 Times Cited Count:2 Percentile:49.94(Astronomy & Astrophysics)

Journal Articles

Impact assessment on local damage to reinforced concrete panels by different projectiles; Impact behavior for projectiles with hemispherical nose shape

Kang, Z.; Nagai, Minoru*; Nishida, Akemi; Tsubota, Haruji; Li, Y.

Proceedings of 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT-25) (USB Flash Drive), 10 Pages, 2019/08

Many empirical formulae have been proposed for evaluating the local damage to reinforced concrete (RC) structures caused by rigid projectile impact. The majority of these formulae aim at impact tests perpendicular to target structures, while few impact tests oblique to the target structure have been studied. The final objective of this study is to propose a new formula for evaluating the local damage to RC structures caused by oblique impact based on past experimental and simulation results. Up to now, we validated the analytical method by comparison with the experimental results and conduct the simulation analysis of impact assessment on RC panel by rigid/soft projectile with flat nose shape using the validated approach. In the part 1 of this paper, the same analytical method is used to simulate the local damage to RC panels caused by oblique impact of rigid/soft projectile with hemispherical nose shape. The results associated with penetration depth of RC structure, energy contribution ratio, etc. are presented.

Journal Articles

Improvement of probabilistic fracture mechanics analysis code PASCAL-SP with regard to PWSCC

Mano, Akihiro; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.

Journal of Nuclear Engineering and Radiation Science, 5(3), p.031505_1 - 031505_8, 2019/07

Probabilistic fracture mechanics (PFM) analysis is expected as a rational method for the structural integrity assessment because it can consider the uncertainties of various influence factors and can evaluate the quantitative value such as failure probability of a cracked component as the solution. In the Japan Atomic Energy Agency, a PFM analysis code PASCAL-SP has been developed for the structural integrity assessment of piping welds in nuclear power plants. In the latest few decades, a number of cracks due to primary water stress corrosion cracking (PWSCC) have been detected in the nickel-based alloy welds in the primary piping of pressurized water reactors (PWRs). Thus the structural integrity assessment taking account of PWSCC has become important. In this paper, we improved PASCAL-SP for the assessment considering PWSCC by introducing the several analytical functions such as the evaluation models of crack initiation time, crack growth rate and probability of crack detection. By using improved PASCAL-SP, the failure probabilities of pipes with a circumferential crack or an axial crack due to PWSCC were evaluated as numerical examples. We also evaluated the influence of a leak detection and a non-destructive examination on the failure probabilities. On the basis of the numerical results, we concluded that the improved PASCAL-SP is useful for evaluating the failure probability of pipe taking PWSCC into account.

Journal Articles

Application of probabilistic fracture mechanics methodology for Japanese reactor pressure vessels using PASCAL4

Lu, K.; Katsuyama, Jinya; Li, Y.; Yoshimura, Shinobu*

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 9 Pages, 2019/07

Journal Articles

Effect of coolant water temperature of ECCS on failure probability of RPV

Katsuyama, Jinya; Masaki, Koichi; Lu, K.; Watanabe, Tadashi*; Li, Y.

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 7 Pages, 2019/07

For reactor pressure vessel (RPV) of pressurized water reactor, temperature of coolant water in emergency core cooling system (ECCS) may have influence on the structural integrity of RPV during pressurized thermal shock (PTS) events. Focusing on a mitigation measure to raise the coolant water temperature of ECCS for aged RPVs in order to reduce the effect of thermal shock due to PTS events, we performed thermal hydraulic analyses and probabilistic fracture mechanics analyses by using RELAP5 and PASCAL4, respectively. From the analysis results, it was shown that the failure probability of RPV was dramatically reduced when the coolant temperature in accumulator as well as high and low pressure injection systems (HPI/LPI) was raised, although raising the coolant temperature of HPI/LPI only did not cause reduction in the failure probability.

Journal Articles

Plastic collapse stresses for thick wall pipes with external cracks

Hasegawa, Kunio; Li, Y.; Lacroix, V.*; Mares, V.*

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 8 Pages, 2019/07

Bending stress at plastic collapse for a circumstantially cracked pipe is predicted by limit load equation provided by the Appendix C of the ASME Code Section XI. The equation of the Appendix C is applicable for pipes with both external and internal surface cracks. On the other hand, authors had developed an equation taking into account the pipe mean radii at non-cracked area and at cracked ligament area. From the comparison of Appendix C equation and the new equation, the plastic collapse stress estimated by the Appendix C equation gives 20 to 30% less conservative for external cracked pipes with small $$R_{m}/t$$, where $$R_{m}$$ is the pipe mean radius and t is the pipe wall thickness. This paper discusses the limitation of the use of $$R_{m}/t$$ for the Appendix C equation.

Journal Articles

Plastic collapse stresses based on flaw combination rules for pipes containing two circumferential similar flaws

Hasegawa, Kunio; Li, Y.; Kim, Y.-J.*; Lacroix, V.*; Strnadel, B.*

Journal of Pressure Vessel Technology, 141(3), p.031201_1 - 031201_5, 2019/06

 Times Cited Count:0 Percentile:100(Engineering, Mechanical)

When discrete multiple flaws are in the same plane, and they are close to each other, it can be determined whether they are combined or standalone in accordance with combination rules provided by Fitness-For-Service (FFS) codes. However, specific criteria of the rules are different amongst these FFS codes. On the other hand, plastic collapse bending stresses for stainless steel pipes with two circumferential similar flaws were obtained by experiments and the prediction procedure for collapse stresses for pipes with two similar flaws were developed analytically. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with two similar flaws are compared with the stresses in compliance with the flaw combination criteria. It is shown that the calculated plastic collapse stresses based on the flaw combination criteria are significantly different from the experimental and analytical stresses.

Journal Articles

Evidence for singular-phonon-induced nematic superconductivity in a topological superconductor candidate Sr$$_{0.1}$$Bi$$_{2}$$Se$$_{3}$$

Wang, J.*; Ran, K.*; Li, S.*; Ma, Z.*; Bao, S.*; Cai, Z.*; Zhang, Y.*; Nakajima, Kenji; Kawamura, Seiko; $v{C}$erm$'a$k, P.*; et al.

Nature Communications (Internet), 10, p.2802_1 - 2802_6, 2019/06

 Times Cited Count:1 Percentile:37.45(Multidisciplinary Sciences)

Journal Articles

Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system

Zhang, Y.*; Guo, H.*; Kim, S. B.*; Wu, Y.*; Ostojich, D.*; Park, S. H.*; Wang, X.*; Weng, Z.*; Li, R.*; Bandodkar, A. J.*; et al.

Lab on a Chip, 19(9), p.1545 - 1555, 2019/05

 Times Cited Count:8 Percentile:2.17(Biochemical Research Methods)

This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, across physiologically relevant ranges. The results allow for routine, non-pharmacological capture of sweat across patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring.

Journal Articles

Influence evaluation of sampling methods of the non-destructive examination on failure probability of piping based on probabilistic fracture mechanics analyses

Mano, Akihiro; Katsuyama, Jinya; Li, Y.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05

In Japanese nuclear power plants, non-destructive examinations (NDEs) are performed for welds in piping in accordance with the rules such as Rules on Fitness-for-Service for Nuclear Power Plant of the Japan Society of Mechanical Engineers (JSME FFS). A set of NDEs is performed in each 10-year interval, and the extent of examination in each interval is specified in the rules. Welding lines to be examined are selected considering the extent of examination based on two sampling methods. One is the fixed location sampling method that welds to be examined are selected from welds examined in the last interval. The other is the random location sampling method that welds to be examined are selected from other than welds examined in the last interval. The selection of the sampling methods is considered to be one of the important factors in in-service inspection. Probabilistic fracture mechanics (PFM) analysis is expected to be more rational method for the structural integrity assessment because it can consider the uncertainties of various influence factors and evaluate the quantitative values such as failure probability of a cracked component as the solution. In this study, we investigated the influence of the sampling methods related to the NDE on failure probability of typical nuclear piping based on PFM analyses. Through sensitivity PFM analyses, we confirmed that failure probability value obtained from PFM analysis is useful as a quantitative numerical index for selecting the sampling method in an in-service inspection.

306 (Records 1-20 displayed on this page)