Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 168

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Analytical study of perforation damage to reinforced concrete slabs subjected to oblique impact by projectiles with different nose shapes

Kang, Z.; Okuda, Yukihiko; Nishida, Akemi; Tsubota, Haruji; Li, Y.

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

Plenty of researches have been carried out to establish a rational assessment method for nuclear power plants against local damage caused by accidental projectile impact. Most of the empirical formulas have been proposed for quantitatively investigating the local damage to reinforced concrete (RC) structures caused by rigid projectile impact. These formulas have been derived on the basis of impact tests performed perpendicular to the target structure, while few impact tests oblique to the target structures have been studied. The final objective of this study is to propose a new formula for evaluating the local damage to RC structures caused by oblique impact based on experimental and simulation results. At present, we have validated an analytical method via comparison with experimental results and have conducted simulation analyses of oblique impact assessments on RC slab using various projectiles with flat nose shape by this method. In this study, the same analytical method will be applied to investigate the perforation damage to RC slab subjected to oblique impact by projectiles with hemispherical nose shape. In this paper, the effects of projectile's nose shape on the local damage of RC slab, the residual velocity of projectile and the time history of energy transmission will be discussed.

Journal Articles

Analytical study on dynamic response of reinforced concrete structure with internal equipment subjected to projectile impact

Okuda, Yukihiko; Kang, Z.; Nishida, Akemi; Tsubota, Haruji; Li, Y.

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 10 Pages, 2020/08

In case of projectile impact to reactor building of nuclear power plants, stress waves due to the projectile impact propagate from the impacted wall to the interior of the structure. It is an important issue to assess the dynamic response generated with projectile impact for safety related internal equipment because stress waves are likely to excite high-frequency vibrations of internal equipment in the reactor building. The OECD (Organization for Economic Co-operation and Development) / NEA (Nuclear Energy Agency) launched the IRIS (Improving Robustness Assessment Methodologies for Structures Impacted by Projectiles) benchmark project in order to assess the dynamic response for nuclear facility by projectile impact and the third phase of IRIS (IRIS 3) contributes to the investigation on the dynamic response of reinforced concrete (RC) structure with internal equipment. We have participated in the IRIS 3 and have performed the calibration analysis for projectile impact test on the structure which models a reactor building and internal equipment. Specially, we have developed and validated a numerical approach to investigate impact response of the RC structure with internal equipment through the calibration correction. This paper presents partial simulation results from dynamic response of the RC structure with internal equipment and discusses the effect of supporting condition of the internal equipment and stress wave propagation.

Journal Articles

Local damage to reinforced concrete panels subjected to oblique impact by projectiles; Outline of impact test

Nishida, Akemi; Kang, Z.; Okuda, Yukihiko; Tsubota, Haruji; Li, Y.

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08

Studies on the local damage to reinforced concrete (RC) panels subjected to projectile impact have mainly focused on collisions that occur at an angle normal to the structure; thus, research on oblique impact is scarce. Therefore, we conducted research focusing on oblique impact to enable more realistic impact assessment of projectile collisions. To date, the validity of the analytical method has been confirmed by comparing the results with those of previous tests, and the local damage of RC panels that have collided with projectiles has been analytically investigated focusing on the impact angle. Therefore, this study aims to confirm the validity of the analysis method by conducting impact tests under various conditions including the impact angle, and obtaining data for validation. This paper outlines the test for the local damage of RC panels subjected to normal and oblique impact.

Journal Articles

Impact simulations on local damage of reinforced concrete panel influenced by projectile nose shape

Kang, Z.; Nishida, Akemi; Okuda, Yukihiko; Tsubota, Haruji; Li, Y.

Mechanical Engineering Journal (Internet), 7(3), p.19-00566_1 - 19-00566_20, 2020/06

Most impact research has been presented on the basis of impact tests and numerical analysis performed by rigid projectile impact perpendicular to the target structure. On the other hand, there are only few reports on impacts at an oblique angle. To evaluate more realistic conditions regarding issues related to oblique impacts to reinforced concrete (RC) structures, we have proposed an analytical method to estimate the local damage to RC structures by an oblique impact and have validated the evaluation approach by comparison with experimental results. At present, we have finalized simulation analyses of oblique impact assessments on RC panels using rigid/soft projectiles with a flat nose shape utilizing the validated approach. Furthermore, in this study, we focus on impacts caused by rigid/soft projectiles with a hemispherical nose shape. The same analytical method is applied to simulate the structural damage caused by an RC panel due to a rigid/soft projectile with a hemispherical nose shape. Results on the penetration depth of the RC structure and the energy-contribution ratio are presented. By comparing the results of local damage to an RC structure caused by projectiles with flat and hemispherical nose shapes, the influence of the nose shape of the projectile on local damage of the RC panel has been investigated.

Journal Articles

Evidence for magnon-phonon coupling in the topological magnet Cu$$_{3}$$TeO$$_{6}$$

Bao, S.*; Cai, Z.*; Si, W.*; Wang, W.*; Wang, X.*; Shangguan, Y.*; Ma, Z.*; Dong, Z.-Y.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; et al.

Physical Review B, 101(21), p.214419_1 - 214419_8, 2020/06

 Times Cited Count:0 Percentile:100(Materials Science, Multidisciplinary)

Journal Articles

Shell structure of the neutron-rich isotopes $$^{69,71,73}$$Co

Lokotko, T.*; Leblond, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Poves, A.*; Nowacki, F.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Authelet, G.*; et al.

Physical Review C, 101(3), p.034314_1 - 034314_7, 2020/03

 Times Cited Count:1 Percentile:100(Physics, Nuclear)

The structures of the neutron-rich $$^{69,71,73}$$Co isotopes were investigated via ($$p,2p$$) knockout reactions at the Radioactive Isotope Beam Factory, RIKEN. Level schemes were reconstructed using the $$gamma-gamma$$ coincidence technique, with tentative spin-parity assignments based on the measured inclusive and exclusive cross sections. Comparison with shell-model calculations suggests coexistence of spherical and deformed shapes at low excitation energies in the $$^{69,71,73}$$Co isotopes.

Journal Articles

Ultralow thermal conductivity from transverse acoustic phonon suppression in distorted crystalline $$alpha$$-MgAgSb

Li, X.*; Liu, P.-F.*; Zhao, E.*; Zhang, Z.*; Guide, T.*; Le, M. D.*; Avdeev, M.*; Ikeda, Kazutaka*; Otomo, Toshiya*; Kofu, Maiko; et al.

Nature Communications (Internet), 11(1), p.942_1 - 942_9, 2020/02

 Times Cited Count:2 Percentile:14.76(Multidisciplinary Sciences)

In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic and phonon scattering resulting from the dynamic disorder, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in $$alpha$$-MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the intrinsic distorted rocksalt sublattice in this compound, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in $$alpha$$-MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.

Journal Articles

Strong local moment antiferromagnetic spin fluctuations in V-doped LiFeAs

Xu, Z.*; Dai, G.*; Li, Y.*; Yin, Z.*; Rong, Y.*; Tian, L.*; Liu, P.*; Wang, H.*; Xing, L.*; Wei, Y.*; et al.

npj Quantum Materials (Internet), 5(1), p.11_1 - 11_7, 2020/02

 Times Cited Count:2 Percentile:26.75(Materials Science, Multidisciplinary)

Journal Articles

Shell evolution of $$N$$ = 40 isotones towards $$^{60}$$Ca; First spectroscopy of $$^{62}$$Ti

Cort$'e$s, M. L.*; Rodriguez, W.*; Doornenbal, P.*; Obertelli, A.*; Holt, J. D.*; Lenzi, S. M.*; Men$'e$ndez, J.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; et al.

Physics Letters B, 800, p.135071_1 - 135071_7, 2020/01

 Times Cited Count:3 Percentile:13.44(Astronomy & Astrophysics)

Excited states in the $$N$$ = 40 isotone $$^{62}$$Ti were populated via the $$^{63}$$V($$p$$,$$2p$$)$$^{62}$$Ti reaction at $$sim$$200 MeV/nucleon at the Radioactive Isotope Beam Factory and studied using $$gamma$$-ray spectroscopy. The energies of the $$2_1^+ rightarrow 0_{rm gs}^+$$ and $$4_1^+ rightarrow 2_1^+$$ transitions, observed here for the first time, indicate a deformed Ti ground state. These energies are increased compared to the neighboring $$^{64}$$Cr and $$^{66}$$Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings.

Journal Articles

Fine structure in the $$alpha$$ decay of $$^{223}$$U

Sun, M. D.*; Liu, Z.*; Huang, T. H.*; Zhang, W. Q.*; Andreyev, A. N.; Ding, B.*; Wang, J. G.*; Liu, X. Y.*; Lu, H. Y.*; Hou, D. S.*; et al.

Physics Letters B, 800, p.135096_1 - 135096_5, 2020/01

 Times Cited Count:1 Percentile:30.54(Astronomy & Astrophysics)

Journal Articles

$$alpha$$-decay properties of $$^{200,202}$$Fr

Ghys, L.*; Andreyev, A. N.; Huyse, M.*; Van Duppen, P.*; Antalic, S.*; Barzakh, A.*; Capponi, L.*; Cocolios, T. E.*; Cubiss, J.*; Derkx, X.*; et al.

Physical Review C, 100(5), p.054310_1 - 054310_13, 2019/11

 Times Cited Count:5 Percentile:18.92(Physics, Nuclear)

Journal Articles

Comparison of heavy-ion transport simulations; Collision integral with pions and $$Delta$$ resonances in a box

Ono, Akira*; Xu, J.*; Colonna, M.*; Danielewicz, P.*; Ko, C. M.*; Tsang, M. B.*; Wang, Y,-J.*; Wolter, H.*; Zhang, Y.-X.*; Chen, L.-W.*; et al.

Physical Review C, 100(4), p.044617_1 - 044617_35, 2019/10

 Times Cited Count:15 Percentile:2.38(Physics, Nuclear)

International comparison of heavy-ion induced reaction models were discussed in the international conference "Transport2017" held in April 2017. Owing to their importance for safety assessment of heavy-ion accelerators and dosimetry of astronauts, various models to simulate heavy-ion induced reaction models are developed. This study is intended to clarify the difference among them to pinpoint their problems. In the comparison study, 320 protons and neutrons were packed in a 20-fm-large cube to calculate the number and energies of collisions during the time evolution. The author contributed to this study by running calculation using JQMD (JAERI Quantum Molecular Dynamics). This study showed that time step in the calculation is one of the biggest causes of the discrepancies. For example, the calculation by JQMD comprises 1-fm/c time steps, each of which is composed of transport, scattering and decay phases. Therefore a sequence of scattering, and decay followed by another scattering in 1 fm/c cannot be considered. Moreover, in JQMD particles are labeled by sequential numbers and scattering reactions are simulated by the order. Therefore scattering between low ID numbers, that between high ID numbers and that between the first (low ID) pair is overlooked in JQMD. Above indications obtained in this study must be kept in our mind for future JQMD upgrades.

Journal Articles

Quasifree neutron knockout from $$^{54}$$Ca corroborates arising $$N=34$$ neutron magic number

Chen, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Chazono, Yoshiki*; Navr$'a$til, P.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Raimondi, F.*; et al.

Physical Review Letters, 123(14), p.142501_1 - 142501_7, 2019/10

 Times Cited Count:8 Percentile:16.18(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Evaluation of local damage to reinforced concrete panels subjected to oblique impact by soft missile

Nishida, Akemi; Kang, Z.; Nagai, Minoru*; Tsubota, Haruji; Li, Y.

Nuclear Engineering and Design, 350, p.116 - 127, 2019/08

 Times Cited Count:3 Percentile:58.8(Nuclear Science & Technology)

Many empirical formulas have been proposed for evaluating local damage to reinforced concrete structures caused by impacts of rigid missiles. Most of these formulas have been derived based on tests involving impact normal to target structures. Thus far, few tests with oblique impact onto target structures have been carried out. As a final goal of this research, we aim to propose a new formula for evaluating the local damage caused by oblique impact based on previous experimental and simulation results. In this study, we perform simulation analyses for evaluating the local damage to reinforced concrete panels subjected to oblique impacts with various angle by soft missiles under various impact velocities using a simulation method that was validated using the results of previous impact experiments. In this paper, the investigated results and obtained knowledges from them are shown.

Journal Articles

Impact assessment on local damage to reinforced concrete panels by different projectiles; Impact behavior for projectiles with hemispherical nose shape

Kang, Z.; Nagai, Minoru*; Nishida, Akemi; Tsubota, Haruji; Li, Y.

Proceedings of 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT-25) (USB Flash Drive), 10 Pages, 2019/08

Many empirical formulae have been proposed for evaluating the local damage to reinforced concrete (RC) structures caused by rigid projectile impact. The majority of these formulae aim at impact tests perpendicular to target structures, while few impact tests oblique to the target structure have been studied. The final objective of this study is to propose a new formula for evaluating the local damage to RC structures caused by oblique impact based on past experimental and simulation results. Up to now, we validated the analytical method by comparison with the experimental results and conduct the simulation analysis of impact assessment on RC panel by rigid/soft projectile with flat nose shape using the validated approach. In the part 1 of this paper, the same analytical method is used to simulate the local damage to RC panels caused by oblique impact of rigid/soft projectile with hemispherical nose shape. The results associated with penetration depth of RC structure, energy contribution ratio, etc. are presented.

Journal Articles

Evidence for singular-phonon-induced nematic superconductivity in a topological superconductor candidate Sr$$_{0.1}$$Bi$$_{2}$$Se$$_{3}$$

Wang, J.*; Ran, K.*; Li, S.*; Ma, Z.*; Bao, S.*; Cai, Z.*; Zhang, Y.*; Nakajima, Kenji; Kawamura, Seiko; $v{C}$erm$'a$k, P.*; et al.

Nature Communications (Internet), 10, p.2802_1 - 2802_6, 2019/06

 Times Cited Count:7 Percentile:13.47(Multidisciplinary Sciences)

Journal Articles

Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system

Zhang, Y.*; Guo, H.*; Kim, S. B.*; Wu, Y.*; Ostojich, D.*; Park, S. H.*; Wang, X.*; Weng, Z.*; Li, R.*; Bandodkar, A. J.*; et al.

Lab on a Chip, 19(9), p.1545 - 1555, 2019/05

 Times Cited Count:20 Percentile:1.78(Biochemical Research Methods)

This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, across physiologically relevant ranges. The results allow for routine, non-pharmacological capture of sweat across patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring.

Journal Articles

Proton shell evolution below $$^{132}$$Sn; First measurement of low-lying $$beta$$-emitting isomers in $$^{123,125}$$Ag

Chen, Z. Q.*; Li, Z. H.*; Hua, H.*; Watanabe, Hiroshi*; Yuan, C. X.*; Zhang, S. Q.*; Lorusso, G.*; Orlandi, R.; 60 of others*

Physical Review Letters, 122(21), p.212502_1 - 212502_6, 2019/05

 Times Cited Count:4 Percentile:25.43(Physics, Multidisciplinary)

Journal Articles

Simulation analysis on local damage to reinforced concrete panels subjected to oblique impact by different projectiles, 1; Comparison of impact behavior for rigid projectiles with flat and hemispherical nose shape

Kang, Z.; Nagai, Minoru*; Nishida, Akemi; Tsubota, Haruji; Li, Y.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

Many empirical formulae have been proposed for evaluating the local damage to reinforced concrete (RC) structures caused by rigid projectile impact. The majority of these formulae aim at impact tests perpendicular to target structures, while few impact tests oblique to the target structure have been studied. The final objective of this study is to propose a new formula for evaluating the local damage to RC structures caused by oblique impact based on past experimental and simulation results. The finite element code LS-DYNA R7.1.2 is used to perform the numerical analysis by adopting Lagrangian finite elements and explicit time integration. So far, we validated the analytical method by comparison with the experimental results and conduct the simulation analysis of impact assessment on RC panel by rigid/soft projectile with flat nose shape using the validated approach. Results of reduction coefficient with respect to rigid/soft projectile and impact angle were obtained. Therefore, in this study, we focus on the impact problems caused by rigid projectile with hemispherical nose shape. The same analytical method is used to simulate the local damage to RC panels caused by oblique impact of rigid projectile with hemispherical nose shape. The results associated with penetration depth of RC structure, energy contribution ratio, etc. are presented. According to the comparison analysis of results of local damage to RC structure by rigid projectiles with flat and hemispherical nose shape, the influence of different nose shapes of rigid projectile on the local damage of RC panels caused by oblique impact is investigated.

Journal Articles

Simulation analysis on local damage to reinforced concrete panels subjected to oblique impact by different projectiles, 2; Comparison of impact behavior for soft projectiles with flat and hemispherical nose shape

Nagai, Minoru*; Kang, Z.; Nishida, Akemi; Tsubota, Haruji; Li, Y.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

In this study, the final purpose is to propose a new formula for evaluating the local damage caused by oblique impact based on past experimental results and previous research achievements. Up to now, we validated the analytical method by comparison with the experimental results and conducted simulation analysis associated with impact assessment on RC panel by soft/rigid projectile with flat nose shape using the validated approach. In the part 1 of this study, the same procedure of our previous work is followed to investigate the local damage to RC panel caused by rigid projectile with flat and hemispherical nose shape. In the part 2, we focus on the comparison analysis of simulation results of local damage to RC panel subjected to oblique impact by soft missile with flat and hemispherical nose shape. The structural damage of RC panel and projectiles, energy contribution ratio, etc. is studied for each case. The results indicate the difference of nose shape of projectile is of great importance to influence the penetration depth generated by oblique impact of soft projectile.

168 (Records 1-20 displayed on this page)