Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Choe, H.*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Lim, S.*; et al.
Construction and Building Materials, 365, p.130034_1 - 130034_18, 2023/02
Times Cited Count:3 Percentile:93.65(Construction & Building Technology)Ho, D. M. L.*; Nelwamondo, A. N.*; Okubo, Ayako; Ramebck, H.*; Song, K.*; Han, S.-H.*; Hancke, J. J.*; Holmgren, S.*; Jonsson, S.*; Kataoka, Osamu; et al.
Journal of Radioanalytical and Nuclear Chemistry, 315(2), p.353 - 363, 2018/02
Times Cited Count:1 Percentile:11.93(Chemistry, Analytical)The Fourth Collaborative Material Exercise (CMX-4) of the Nuclear Forensics International Technical Working Group (ITWG) registered the largest participation for this exercise in nuclear forensics, with seven of the 17 laboratories participating for the first time. In this paper, participants from five of the first-time laboratories shared their individual experience in this exercise, from preparation to analysis of samples. The exercise proved to be highly useful for testing procedures, repurposing established methods, exercising skills, and improving the understanding of nuclear forensic signatures and their interpretation trough the post-exercise review meeting.
Kristo, M. J.*; Williams, R.*; Gaffney, A. M.*; Kayzar-Boggs, T. M.*; Schorzman, K. C.*; Lagerkvist, P.*; Vesterlund, A.*; Ramebck, H.*; Nelwamondo, A. N.*; Kotze, D.*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 315(2), p.425 - 434, 2018/02
Times Cited Count:12 Percentile:78.92(Chemistry, Analytical)In a recent international exercise, 10 international nuclear forensics laboratories successfully performed radiochronometry on three low enriched uranium oxide samples, providing 12 analytical results using three different parent-daughter pairs serving as independent chronometers. The vast majority of the results were consistent with one another and consistent with the known processing history of the materials. In general, for these particular samples, mass spectrometry gave more accurate and more precise analytical results than decay counting measurements. In addition, the concordance of the U-
Pa and
U-
Th chronometers confirmed the validity of the age dating assumptions, increasing confidence in the resulting conclusions.
Okada, Atsushi*; He, S.*; Gu, B.; Kanai, Shun*; Soumyanarayanan, A.*; Lim, S. T.*; Tran, M.*; Mori, Michiyasu; Maekawa, Sadamichi; Matsukura, Fumihiro*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 144(15), p.3815 - 3820, 2017/04
Haneklaus, N.*; Reyes, R.*; Lim, W. G.*; Tabora, E. U.*; Palattao, B. L.*; Petrache, C.*; Vargas, E. P.*; Kunitomi, Kazuhiko; Ohashi, Hirofumi; Sakaba, Nariaki; et al.
Philippine Journal of Science, 144(1), p.69 - 79, 2015/06
The Philippines may profit from extracting uranium (U) from phosphoric acid during fertilizer production in a way that the recovered U can be beneficiated and taken as raw material for nuclear reactor fuel. Used in a high temperature reactor (HTR) that provides electricity and/or process heat for fertilizer processing and U extraction, energy-neutral fertilizer production, an idea first proposed by Haneklaus et al., is possible. This paper presents a first case study of the concept regarding a representative phosphate fertilizer plant in the Philippines and exemplary HTR designs (HTR50S and GTHTR300C) developed by the Japan Atomic Energy Agency (JAEA). Three different arrangements (version I-III), ranging from basic electricity supply to overall power supply including on site hydrogen production for ammonia conversion, are introduced and discussed.
Ostermeyer, M.*; Kong, H.-J.*; Kovalev, V. I.*; Harrison, R. G.*; Fotiadi, A. A.*; Mgret, P.*; Kalal, M.*; Slezak, O.*; Yoon, J. W.*; Shin, J. S.*; et al.
Laser and Particle Beams, 26(3), p.297 - 362, 2008/09
Times Cited Count:41 Percentile:55.98(Physics, Applied)