Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Chen, J.*; Yamamoto, Kei; Zhang, J.*; Ma, J.*; Wang, H.*; Sun, Y.*; Chen, M.*; Ma, J.*; Liu, S.*; Gao, P.*; et al.
Physical Review Applied (Internet), 19(2), p.024046_1 - 024046_9, 2023/02
Liu, S.*; Yang, D. S.*; Wang, S.*; Luan, H.*; Sekine, Yurina; Model, J. B.*; Aranyosi, A. J.*; Ghaffari, R.*; Rogers, J. A.*
EcoMat (Internet), 5(1), p.e12270_1 - e12270_18, 2023/01
Times Cited Count:2 Percentile:75.4(Chemistry, Physical)Advanced capabilities in noninvasive, in situ monitoring of sweat serve as the basis for obtaining real-time insights into human physiological state, health, and performance. Although recently reported microfluidic systems support powerful functions, most are designed as single-use disposables. Here, we introduce materials and molding techniques that bypass these concerns through biodegradable microfluidic systems with a full range of features. The key components fully degrade through the enzymatic action of microorganisms in natural soil environments. Detailed characterization of the device reveal a set of essential performance parameters that are comparable to, or even better than, those of non-degradable counterparts. Human subject studies illustrate the ability of these devices to acquire accurate measurements of sweat loss, sweat rate, pH, and chloride concentration.
Iimura, Shun*; Rosenbusch, M.*; Takamine, Aiko*; Tsunoda, Yusuke*; Wada, Michiharu*; Chen, S.*; Hou, D. S.*; Xian, W.*; Ishiyama, Hironobu*; Yan, S.*; et al.
Physical Review Letters, 130(1), p.012501_1 - 012501_6, 2023/01
Liu, X. J.*; Xu, P. G.; Shiro, Ayumi*; Zhang, S. Y.*; Shobu, Takahisa; Yukutake, Eitaro*; Akita, Koichi*; Zolotoyabko, E.*; Liss, K.-D.*
Journal of Materials Science, 57(46), p.21446 - 21459, 2022/12
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)Elekes, Z.*; Juhsz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12
Times Cited Count:0The low-lying level structure of V and
V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for
V while the neutron knock-out reaction provided the data for
V. Four and five new transitions were determined for
V and
V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed
rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2
and 9/2
levels. The (
,
) excitation cross sections for
V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation,
V could not be unambiguously placed on the island of inversion.
Enciu, M.*; Liu, H. N.*; Obertelli, A.*; Doornenbal, P.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review Letters, 129(26), p.262501_1 - 262501_7, 2022/12
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)The one-neutron knockout from Ca was performed at
230 MeV/nucleon combined with prompt
spectroscopy. The momentum distributions corresponding to the removal of
and
neutrons were measured. The cross sections are consistent with a shell closure at the neutron number
, found as strong as at
and
in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron
and
orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the
orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.
Zheng, R.*; Gong, W.; Du, J.-P.*; Gao, S.*; Liu, M.*; Li, G.*; Kawasaki, Takuro; Harjo, S.; Ma, C.*; Ogata, Shigenobu*; et al.
Acta Materialia, 238, p.118243_1 - 118243_15, 2022/10
Times Cited Count:3 Percentile:86.42(Materials Science, Multidisciplinary)Liu, B.*; Feng, R.*; Busch, M.*; Wang, S.*; Wu, H.*; Liu, P.*; Gu, J.*; Bahadoran, A.*; Matsumura, Daiju; Tsuji, Takuya; et al.
ACS Nano, 16(9), p.14121 - 14133, 2022/09
Times Cited Count:2 Percentile:57.86(Chemistry, Multidisciplinary)Soler, J. M.*; Meng, S.*; Moreno, L.*; Neretnieks, I.*; Liu, L.*; Kekl
inen, P.*; Hokr, M.*;
ha, J.*; Vete
n
k, A.*; Reimitz, D.*; et al.
Geologica Acta, 20(7), 32 Pages, 2022/07
Times Cited Count:1 Percentile:0.03(Geology)Task 9B of the SKB Task Force on Modelling of Groundwater Flow and Transport of Solutes in fractured rock focused on the modelling of experimental results from the LTDE-SD in situ tracer test performed at the sp
Hard Rock Laboratory in Sweden. Ten different modelling teams provided results for this exercise, using different concepts and codes. Three main types of modelling approaches were used: (1) analytical solutions to the transport-retention equations, (2) continuum-porous-medium numerical models, and (3) microstructure-based models accounting for small-scale heterogeneity (i.e. mineral grains and microfracture distributions). The modelling by the different teams allowed the comparison of many different model concepts, especially in terms of potential zonations of rock properties (porosity, diffusion, sorption), such as the presence of a disturbed zone at the rock and fracture surface, the potential effects of micro- and cm-scale fractures.
Liu, J.; Dotsuta, Yuma; Sumita, Takehiro; Kitagaki, Toru; Onuki, Toshihiko; Kozai, Naofumi
Journal of Radioanalytical and Nuclear Chemistry, 331(6), p.2785 - 2794, 2022/06
Times Cited Count:2 Percentile:0.01(Chemistry, Analytical)Remnant nuclear fuel debris in the damaged nuclear reactors at the Fukushima Daiichi Nuclear Power Plant (FDNPP) has contacted the groundwater containing microorganisms for over ten years. Herein, we report the possibility of bacterial alteration of fuel debris. We investigated the physical and chemical changes of fuel debris simulants (FDS) in the powder and pellet forms via exposure to two ubiquitous bacteria, Pseudomonas fluorescens and Bacillus subtilis. In the experiments using FDS composed of the powders of Fe(0), solid solution of CeO and ZrO
, and SiO
, Ce, Zr, and Si were hardly dissolved, while Fe was dissolved, a fraction of the dissolved Fe was present in the liquid phase as Fe(II) and Fe(III), and the rest was precipitated as the nano-sized particles of iron (hydr)oxides. In the experiment using P. fluorescens and FDS pellet pieces prepared by melting the Fe(0) particles and solid solution of CeO
and ZrO
, the bacteria selectively gathered on the Fe(0) particle surface and made corrosion pits. These results suggest that bacteria in groundwater corrode the iron in fuel debris at FDNPP, change fuel debris into porous one, releasing the nano-sized iron (hydr)oxide particles into the water.
Soler, J. M.*; Neretnieks, I.*; Moreno, L.*; Liu, L.*; Meng, S.*; Svensson, U.*; Iraola, A.*; Ebrahimi, K.*; Trinchero, P.*; Molinero, J.*; et al.
Nuclear Technology, 208(6), p.1059 - 1073, 2022/06
Times Cited Count:2 Percentile:30.57(Nuclear Science & Technology)The SKB Task Force is an international forum on modelling of groundwater flow and solute transport in fractured rock. The WPDE experiments are matrix diffusion experiments in gneiss performed at the ONKALO underground facility in Finland. Synthetic groundwater containing several conservative and sorbing tracers was injected along a borehole interval. The objective of Task 9A was the predictive modelling of the tracer breakthrough curves from the WPDE experiments. Several teams, using different modelling approaches and codes, participated in this exercise. An important conclusion from this exercise is that the modelling results were very sensitive to the magnitude of dispersion in the borehole opening, which is related to the flow of water. Focusing on the tails of the breakthrough curves, which are more directly related to matrix diffusion and sorption, the results from the different teams were more comparable.
Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Huang, H.*; Li, Z. H.*; Li, J. G.*; Guo, C. Y.*; 34 of others*
Physics Letters B, 829, p.137129_1 - 137129_7, 2022/06
Times Cited Count:3 Percentile:92.48(Astronomy & Astrophysics)Wu, C.*; Tanaka, Kazuya; Tani, Yukinori*; Bi, X.*; Liu, J.*; Yu, Q.*
Science of the Total Environment, 821, p.153265_1 - 153265_9, 2022/05
Times Cited Count:7 Percentile:96.64(Environmental Sciences)Microplastics (MPs) with different particle sizes were co-cultured with a model freshwater fungus, strain KR21-2, to form biofilms on their surface. We also determined the changes in surface physicochemical properties of the biofilm-covered MPs (BMPs) and the heavy metal adsorption capacity of the original MPs and BMPs. The results revealed that the biofilms improve the adsorption of heavy metals on MPs, and the particle size of MPs plays a crucial role in biofilm colonization and adsorption of heavy metals by BMPs.
Liu, J.; Nakajima, Kunihisa; Miwa, Shuhei; Shirasu, Noriko; Osaka, Masahiko
Journal of Nuclear Science and Technology, 59(4), p.484 - 490, 2022/04
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Koiwai, Takuma*; Wimmer, K.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Duguet, T.*; Holt, J. D.*; Miyagi, Takayuki*; Navrtil, P.*; Ogata, Kazuyuki*; et al.
Physics Letters B, 827, p.136953_1 - 136953_7, 2022/04
Times Cited Count:2 Percentile:67.14(Astronomy & Astrophysics)no abstracts in English
Liu, M.*; Gong, W.; Zheng, R.*; Li, J.*; Zhang, Z.*; Gao, S.*; Ma, C.*; Tsuji, Nobuhiro*
Acta Materialia, 226, p.117629_1 - 117629_13, 2022/03
Times Cited Count:11 Percentile:98.67(Materials Science, Multidisciplinary)Wang, X.*; Tang, X.*; Zhang, P.*; Wang, Y.*; Gao, D.*; Liu, J.*; Hui, K.*; Wang, Y.*; Dong, X.*; Hattori, Takanori; et al.
Journal of Physical Chemistry Letters (Internet), 12(50), p.12055 - 12061, 2021/12
Times Cited Count:3 Percentile:48.7(Chemistry, Physical)Substituted polyacetylene is expected to improve the chemical stability, physical properties, and additional functions of the polyacetylene backbones, but its diversity is very limited. Here, by applying external pressure on solid acetylenedicarboxylic acid, we report the first crystalline poly-dicarboxylacetylene with every carbon on the trans-polyacetylene backbone bonded to a carboxyl group, which is very hard to synthesize by traditional methods. This unique structure combines the extremely high content of carbonyl groups and high conductivity of a polyacetylene backbone, which exhibits a high specific capacity and excellent cycling/rate performance as a Li-ion battery (LIB) anode. We present a completely functionalized crystalline polyacetylene and provide a high-pressure solution for the synthesis of polymeric LIB materials and other polymeric materials with a high content of active groups.
Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:1 Percentile:17.16(Astronomy & Astrophysics)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Chen, S.*; Chung, L. X.*; Duguet, T.*; Gmez-Ramos, M.*; et al.
Physical Review C, 104(4), p.044331_1 - 044331_16, 2021/10
Times Cited Count:2 Percentile:32.08(Physics, Nuclear)no abstracts in English
Soler, J. M.*; Meng, S.*; Moreno, L.*; Neretnieks, I.*; Liu, L.*; Kekl
inen, P.*; Hokr, M.*;
ha, J.*; Vete
n
k, A.*; Reimitz, D.*; et al.
SKB TR-20-17, 71 Pages, 2021/07
Task 9B of the SKB Task Force on Modelling of Groundwater Flow and Transport of Solutes in fractured rock focused on the modelling of experimental results from the LTDE-SD in situ tracer test performed at the sp
Hard Rock Laboratory in Sweden. Ten different modelling teams provided results for this exercise, using different concepts and codes. Three main types of modelling approaches were used: (1) analytical solutions to the transport-retention equations, (2) continuum-porous-medium numerical models, and (3) microstructure-based models accounting for small-scale heterogeneity (i.e. mineral grains and microfracture distributions). The modelling by the different teams allowed the comparison of many different model concepts, especially in terms of potential zonations of rock properties (porosity, diffusion, sorption), such as the presence of a disturbed zone at the rock and fracture surface, the potential effects of micro- and cm-scale fractures.