Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Li, F.*; Tang, X.*; Fei, Y.*; Zhang, J.*; Liu, J.*; Lang, P.*; Che, G.*; Zhao, Z.*; Zheng, Y.*; Fang, Y.*; et al.
Journal of the American Chemical Society, 147(17), p.14054 - 14059, 2025/04
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)We synthesized a crystalline graphane nanoribbon (GANR) via pressure-induced polymerization of 2,2'-bipyrazine (BPZ). By performing Rietveld refinement of in situ neutron diffraction data, nuclear magnetic resonance spectroscopy, infrared spectra, and theoretical calculation, we found that BPZ experienced Diels-Alder polymerization between the
stacked aromatic rings, and formed extended boat-GANR structures with exceptional long-range order. The unreacted -C=N- groups bridge the two ends of the boat, and ready for further functionalization. The GANR has a bandgap of 2.25 eV, with booming photoelectric response (
/
=18.8). Our work highlights that the high-pressure topochemical polymerization is a promising method for the precise synthesis of graphane with specific structure and desired properties.
Cho, S. H.*; Cho, S. W.*; Lv, Z.*; Sekine, Yurina; Liu, S.*; Zhou, M.*; Nuxoll, R. F.*; Kanatzidis, E. E.*; Ghaffari, R.*; Kim, D.*; et al.
Lab on a Chip, 9 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Biochemical Research Methods)Amino acids are essential for protein synthesis and metabolic processes in support of homeostatic balance and healthy body functions. This study quantitatively investigates eccrine sweat as a significant channel for loss of amino acids during exercise, to improve an understanding of amino acid turnover and to provide feedback to users on the need for supplement intake. The measurement platform consists of a soft, skin-interfaced microfluidic system for real-time analysis of amino acid content in eccrine sweat. This system relies on integrated fluorometric assays and smartphone-based imaging techniques for quantitative analysis.
Pan, Y.-W.*; Liu, Z.-W.*; Geng, L.-S.*; Hosaka, Atsushi; Liu, X.*
Physical Review D, 110(9), p.094004_1 - 094004_8, 2024/11
Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)no abstracts in English
Uchida, Kazuto*; Masuda, Tsukuru*; Hara, Shintaro*; Matsuo, Yoichi*; Liu, Y.*; Aoki, Hiroyuki; Asano, Yoshihiko*; Miyata, Kazuki*; Fukuma, Takeshi*; Ono, Toshiya*; et al.
ACS Applied Materials & Interfaces, 16(30), p.39104 - 39116, 2024/07
Times Cited Count:1 Percentile:35.94(Nanoscience & Nanotechnology)Kawano, Masayuki*; Morimitsu, Yuma*; Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Macromolecules, 57(14), p.6625 - 6633, 2024/07
Times Cited Count:0 Percentile:0.00(Polymer Science)Wang, S.*; Wang, J.*; Zhang, S.*; Wei, D.*; Chen, Y.*; Rong, X.*; Gong, W.; Harjo, S.; Liu, X.*; Jiao, Z.*; et al.
Journal of Materials Science & Technology, 185, p.245 - 258, 2024/06
Times Cited Count:15 Percentile:97.90(Materials Science, Multidisciplinary)Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.
Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05
Times Cited Count:6 Percentile:97.32(Nuclear Science & Technology)Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; Kofu, Maiko; Nakajima, Kenji; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.
Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03
Times Cited Count:7 Percentile:91.57(Physics, Applied)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
Times Cited Count:2 Percentile:58.81(Physics, Nuclear)no abstracts in English
Li, C.*; Fang, W.*; Yu, H. Y.*; Peng, T.*; Yao, Z. T.*; Liu, W. G.*; Zhang, X.*; Xu, P. G.; Yin, F.*
Materials Science & Engineering A, 892, p.146096_1 - 146096_11, 2024/02
Times Cited Count:4 Percentile:82.70(Nanoscience & Nanotechnology)Yamamoto, Kazami; Moriya, Katsuhiro; Okita, Hidefumi; Yamada, Ippei; Chimura, Motoki; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Masanobu; Morishita, Takatoshi; et al.
Journal of Neutron Research, 26(2-3), p.59 - 67, 2024/01
The linac and 3 GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex was designed to provide 1-MW proton beams to the following facilities. Thanks to the improvement works of the accelerator system, we successfully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce requirement of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also been continuing study to achieve up to 2 MW beam in J-PARC RCS.
Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.
Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11
Times Cited Count:21 Percentile:93.59(Physics, Multidisciplinary)The cluster structure of the neutron-rich isotope Be has been probed via the (
) reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-R
pke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the
Be ground-state as a rather compact nuclear molecule.
Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Times Cited Count:9 Percentile:85.35(Astronomy & Astrophysics)Gamma decays were observed in Ca and
Ca following quasi-free one-proton knockout reactions from
Sc. For
Ca, a
ray transition was measured to be 1456(12) keV, while for
Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the
decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for
level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the
and
orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic
Ca and potentially drives the dripline of Ca isotopes to
Ca or even beyond.
Li, H.*; Liu, Y.*; Zhao, W.*; Liu, B.*; Tominaga, Aki; Shobu, Takahisa; Wei, D.*
International Journal of Plasticity, 165, p.103612_1 - 103612_20, 2023/06
Times Cited Count:22 Percentile:94.97(Engineering, Mechanical)In order to clarify the strength properties of Co-free maraging steel, tensile experiment using high energy synchrotron X-ray diffraction was performed. Diffraction profiles from the martensitic and austenitic phases were obtained, and their strength and width were observed to vary as loading. Analysis of the diffraction profiles showed that the content of martensite in the as-aged material decreased slowly at low stress levels and decreased rapidly at high stress levels. On the other hand, the austenite phase in the as-solution materials was significantly transformed the martensite phase as the stress increased. It was clarified to be responsible for their respective strength properties.
Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Shundo, Atsuomi*; Kawaguchi, Daisuke*; Tanaka, Keiji*; Aoki, Hiroyuki
Langmuir, 39(29), p.10154 - 10162, 2023/06
Times Cited Count:11 Percentile:74.82(Chemistry, Multidisciplinary)Fang, Y.*; Kong, L.*; Wang, R.*; Zhang, Z.*; Li, Z.*; Wu, Y.*; Bu, K.*; Liu, X.*; Yan, S.*; Hattori, Takanori; et al.
Materials Today Physics (Internet), 34, p.101083_1 - 101083_7, 2023/05
Times Cited Count:8 Percentile:74.51(Materials Science, Multidisciplinary)The layered van der Waals halides are particularly sensitive to external pressure, suggesting a feasible route to pinpoint their structure with extraordinary behavior. However, a very sensitive pressure response usually lead to a detrimental phase transition and/or lattice distortion, making the approach of materials manipulation in a continuous manner remain challenging. Here, the extremely weak interlayer coupling and high tunability of layered RhI crystals are observed. A pressure-driven phase transition occurs at a moderate pressure of 5 GPa, interlinking to a change of layer stack mode. Strikingly, such a phase transition does not affect the tendency of quasi-linear bandgap narrowing, and a metallization with an ultra-broad tunability of 1.3 eV redshift is observed at higher pressures. Moreover, the carrier concentration increases by 4 orders of magnitude at 30 GPa, and the photocurrent enhances by 5 orders of magnitude at 7.8 GPa. These findings create new opportunities for exploring, tuning, and understanding the van der Waals halides by harnessing their unusual feature of a layered structure, which is promising for future devices based on materials-by-design that are atomically thin.
Zhang, T.*; Yao, Y.*; Morita, Koji*; Liu, X.*; Liu, W.*; Imaizumi, Yuya; Kamiyama, Kenji
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05
Tamura, Jun; Futatsukawa, Kenta*; Kondo, Yasuhiro; Liu, Y.*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Okabe, Kota; Yoshimoto, Masahiro
Nuclear Instruments and Methods in Physics Research A, 1049, p.168033_1 - 168033_7, 2023/04
Times Cited Count:2 Percentile:46.61(Instruments & Instrumentation)The Japan Proton Accelerator Research Complex (J-PARC) linac is a high-intensity accelerator in which beam loss is a critical issue. In the J-PARC linac, H beams are accelerated to 191~MeV by a separated drift tube linac (SDTL) and subsequently to 400~MeV by an annular-ring coupled structure (ACS). Because there are more beam loss mechanisms in H
linacs than in proton linacs, it is imperative to investigate the beam loss circumstances for beam loss mitigation. Electron-stripping phenomena, which generate uncontrollable H
particles, are characteristic beam loss factors of H
linacs. To clarify the beam loss causes in the J-PARC linac, a new diagnostic line was installed in the beam transport between the SDTL and ACS. In this diagnostic line, H
particles were separated from the H
beam, and the intensity profiles of the H
particles were successfully measured by horizontally scanning a graphite plate in the range where H
particles were distributed. By examining the intensity variation of the H
particles with different residual pressure levels, we proved that half of the H
particles in the SDTL section are generated by the residual gas stripping in the nominal beam operation of the J-PARC linac.
Pohl, T.*; Sun, Y. L.*; Obertelli, A.*; Lee, J.*; Gmez-Ramos, M.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Cai, B. S.*; Yuan, C. X.*; Brown, B. A.*; et al.
Physical Review Letters, 130(17), p.172501_1 - 172501_8, 2023/04
Times Cited Count:12 Percentile:88.25(Physics, Multidisciplinary)We report on the first proton-induced single proton- and neutron-removal reactions from the neutron deficient O nucleus with large Fermi-surface asymmetry at
100 MeV/nucleon. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively.
Chen, J.*; Yamamoto, Kei; Zhang, J.*; Ma, J.*; Wang, H.*; Sun, Y.*; Chen, M.*; Liu, S.*; Gao, P.*; Yu, D.*; et al.
Physical Review Applied (Internet), 19(2), p.024046_1 - 024046_9, 2023/02
Times Cited Count:6 Percentile:64.95(Physics, Applied)