Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Status of engineering design of liquid lithium target in IFMIF-EVEDA

Nakamura, Hiroo; Agostini, P.*; Ara, Kuniaki; Fukada, Satoshi*; Furuya, Kazuyuki*; Garin, P.*; Gessii, A.*; Giusti, D.*; Groeschel, F.*; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 84(2-6), p.252 - 258, 2009/06

 Times Cited Count:25 Percentile:83.26(Nuclear Science & Technology)

Journal Articles

Experimental investigation of the IFMIF target mock-up

Loginov, N.*; Mikheyev, A.*; Morozov, V.*; Aksenov, Y.*; Arnoldov, M.*; Berensky, L.*; Fedotovsky, V.*; Chernov, V.*; Nakamura, Hiroo

Journal of Nuclear Materials, 386-388, p.958 - 962, 2009/04

 Times Cited Count:6 Percentile:41.05(Materials Science, Multidisciplinary)

The IFMIF lithium target mock-ups have been constructed and tested at water and lithium test facilities. Jet velocity in both mock-ups was up to 20 m/s. Calculations and experiments showed instability of lithium flow at conjunction point of straight and concave sections of the mock-up back wall. Profile of water velocity across the mock-up width, jet thickness, and height of waves were measured. A significant increase of thickness of both water and lithium jets near the mock-up side walls was observed. The influence of shape of the nozzle outlet part on jet stability was investigated. Evaporation of lithium from the jet free surface was investigated as well as deposition of lithium on vacuum pipe walls of the target mock-up. It was showed that these phenomena are not so critical for the target efficiency. The possibility of removal of nitrogen in lithium down to 2ppm by means of aluminum getter was showed.

Journal Articles

Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

Nakamura, Hiroo; Riccardi, B.*; Loginov, N.*; Ara, Kuniaki*; Burgazzi, L.*; Cevolani, S.*; Dell'Ocro, G.*; Fazio, C.*; Giusti, D.*; Horiike, Hiroshi*; et al.

Journal of Nuclear Materials, 329-333(1), p.202 - 207, 2004/08

 Times Cited Count:14 Percentile:66.09(Materials Science, Multidisciplinary)

International Fusion Materials Irradiation Facility (IFMIF), being developed by EU, JA, RF and US, is a deuteron-lithium (Li) reaction neutron source for fusion materials testing. In the end of 2002, 3 year Key Element technology Phase (KEP) to reduce the key technology risk factors has been completed. This paper describes these KEP tasks results. To evaluate Li flow characteristics, a water and Li flow experiments have been done. To develop Li purification system, evaluation of nitrogen and tritium gettering materials have been done. Conceptual design of remote handling and basic experiment have been donde. In addition, safety analysis and diganostics design have been done. In the presentation, the latest design and future prospects will be also summarized.

Journal Articles

Status of activities on the lithium target in the key element technology phase in IFMIF

Nakamura, Hiroo; Burgazzi, L.*; Cevolani, S.*; Dell'Ocro, G.*; Fazio, C.*; Giusti, D.*; Horiike, Hiroshi*; Ida, Mizuho*; Kakui, Hideo*; Loginov, N.*; et al.

Journal of Nuclear Materials, 307-311(2), p.1675 - 1679, 2002/12

no abstracts in English

Journal Articles

Status of activities on the lithium target in the key element technology phase in IFMIF

Nakamura, Hiroo; Burgazzi, L.*; Cevolani, S.*; Dell'Ocro, G.*; Fazio, C.*; Giusti, D.*; Horiike, Hiroshi*; Ida, Mizuho*; Kakui, Hideo*; Loginov, N.*; et al.

Journal of Nuclear Materials, 307-311(Part.2), p.1675 - 1679, 2002/12

 Times Cited Count:4 Percentile:29.25(Materials Science, Multidisciplinary)

This paper describes the latest design of the IFMIF liquid Li target system reflecting the KEP results. Future prospects will be also summarized. To handle an averaged heat flux of 1 GW/m2 under a continuous 10 MW D beam deposition, a high-speed Li flow of 20 m/s, a double reducer nozzle and a concaved flow are applied to the target design. Hydraulic characteristics of the Li target design have been validated in a water jet experiment. To obtain a control scenario of the Li loop in an accident of the D beam trip, a transient analysis has been done. To control tritium and impurities in Li, a cold trap and two kinds of hot trap are adopted in Li purification loop. To maintain reliable continuous operation, various diagnostics are attached to the target assembly. To exchange the target assembly and back wall, a remote handling system with a multi axis arm and welding/cutting tool are designed. As an option, design of a replaceable back wall with a mechanical seal is being in progress. In a next phase of IFMIF beyond 2004, a Li test loop will be constructed for engineering validation.

5 (Records 1-5 displayed on this page)
  • 1