Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Giroud, C.*; Jachmich, S.*; Jacquet, P.*; Jrvinen, A.*; Lerche, E.*; Rimini, F.*; Aho-Mantila, L.*; Aiba, Nobuyuki; Balboa, I.*; Belo, P.*; et al.
Plasma Physics and Controlled Fusion, 57(3), p.035004_1 - 035004_20, 2015/03
Times Cited Count:69 Percentile:95.70(Physics, Fluids & Plasmas)This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas.
Imbeaux, F.*; Citrin, J.*; Hobirk, J.*; Hogeweij, G. M. D.*; Kchl, F.*; Leonov, V. M.*; Miyamoto, Seiji; Nakamura, Yukiharu*; Parail, V.*; Pereverzev, G. V.*; et al.
Nuclear Fusion, 51(8), p.083026_1 - 083026_11, 2011/08
Times Cited Count:37 Percentile:79.82(Physics, Fluids & Plasmas)Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Imbeaux, F.*; Basiuk, V.*; Budny, R.*; Casper, T.*; Citrin, J.*; Fereira, J.*; Fukuyama, Atsushi*; Garcia, J.*; Gribov, Y. V.*; Hayashi, Nobuhiko; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10
In order to prepare adequate current ramp-up and ramp-down scenarios for ITER, present experiments from several tokamaks have been analyzed by means of integrated modeling in view of determining relevant heat transport models for these operation phases. The results of these studies are presented and projections to ITER current ramp-up and ramp-down scenarios are done, focusing on the baseline inductive scenario (main heating plateau current of 15 MA). Various transport models have been tested by means of integrated modeling against experimental data from ASDEX Upgrade, C-Mod, DIII-D, JET and Tore Supra, including both Ohmic plasmas and discharges with additional heating/current drive. With using the most successful models, projections to the ITER current ramp-up and ramp-down phases are carried out. Though significant differences between models appear on the electron temperature prediction, the final q-profiles reached in the simulation are rather close.
Sips, A. C. C.*; Casper, T.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.
Nuclear Fusion, 49(8), p.085015_1 - 085015_11, 2009/08
Times Cited Count:56 Percentile:86.70(Physics, Fluids & Plasmas)Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for
0.23-0.33 V m
is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps
(3)
0.85 during the ramp up to
= 3. A rise phase with an H-mode transition is capable of achieving
(3)
0.7 at the start of the FT. Operation of the H-mode reference scenario at
3 and the hybrid scenario at
= 4-4.5 during the FT phase is documented, providing data for the
(3) evolution after the H-mode transition and the
(3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept
1.2 during the first half of the current decay, using a slow
ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.
Sips, A. C. C.*; Casper, T. A.*; Doyle, E. J.*; Giruzzi, G.*; Gribov, Y.*; Hobirk, J.*; Hogeweij, G. M. D.*; Horton, L. D.*; Hubbard, A. E.*; Hutchinson, I.*; et al.
Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10
The ITER discharge evolution has been verified in dedicated experiments. Results show that breakdown at E 0.23-0.32 V/m is possible un-assisted (ohmic) for large devices like JET and attainable in all devices with ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. Operation of the H-mode reference scenario at q
= 3 and the hybrid scenario at q95=4-4.5 during the flat top phase was documented. Specific studies during the flat top phase provide data for the li evolution after the H-mode transition and the li evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation.
Stober, J.*; Lomas, P. J.*; Saibene, G.*; Andrew, Y.*; Belo, P.*; Conway, G. D.*; Herrmann, A.*; Horton, L. D.*; Kempenaars, M.*; Koslowski, H.-R.*; et al.
Nuclear Fusion, 45(11), p.1213 - 1223, 2005/11
Times Cited Count:44 Percentile:77.83(Physics, Fluids & Plasmas)no abstracts in English
Joffrin, E.*; Sips, A. C. C.*; Artaud, J. F.*; Becoulet, A.*; Bertalot, L.*; Budny, R.*; Buratti, P.*; Belo, P.*; Challis, C. D.*; Crisanti, F.*; et al.
Nuclear Fusion, 45(7), p.626 - 634, 2005/07
Times Cited Count:99 Percentile:93.05(Physics, Fluids & Plasmas)no abstracts in English
Joffrin, E.*; Sips, A. C. C.*; Artaud, J. F.*; Becoulet, A.*; Budny, R.*; Buratti, P.*; Belo, P.*; Challis, C. D.*; Crisanti, F.*; de Baar, M.*; et al.
Proceedings of 20th IAEA Fusion Energy Conference (FEC 2004) (CD-ROM), 8 Pages, 2004/11
no abstracts in English
Bcoulet, M.*; Huysmans, G.*; Sarazin, Y.*; Garbet, X.*; Ghendrih, P.*; Rimini, F.*; Joffrin, E.*; Litaudon, X.*; Monier-Garbet, P.*; An
, J.-M.*; et al.
Plasma Physics and Controlled Fusion, 45(12A), p.A93 - A113, 2003/12
Times Cited Count:85 Percentile:90.67(Physics, Fluids & Plasmas)no abstracts in English
Saibene, G.*; McDonald, D. C.*; Beurskens, M.*; Salmi, A.*; Lonnroth, J. S.*; Parail, V.*; de Vries, P.*; Andrew, Y.*; Budny, R.*; Boboc, A.*; et al.
no journal, ,
This paper describes the results of dedicated experiments carried out in JET, where H-mode plasmas properties were studied for varying levels of toroidal field ripple, in the range from 0.08% (natural for JET) up to
1%. The experiments were carried out in the ELMy H-mode regime with q
=3 to 3.6, to investigate the effect of
on pedestal and core properties of the plasma. These experiments show that toroidal field ripple has a clear effect on H-mode properties, although the physics mechanisms at the root of the reduced energy confinement with
have not been identified unambiguously. Plasma density pump out and reduction of the global energy confinement is found for
0.5%, but the magnitude of this effect depends on plasma parameters. Ripple may also affect pedestal pressure, as well as size and frequency of ELMs. Plasma toroidal rotation was also strongly affected by ripple.