Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on formation mechanism of {332}$$<$$113$$>$$ deformation twinning in metastable $$beta$$-type Ti alloy focusing on stress-induced $$alpha"$$ martensite phase

Cho, K.*; Morioka, Ryota*; Harjo, S.; Kawasaki, Takuro; Yasuda, Hiroyuki*

Scripta Materialia, 177, p.106 - 111, 2020/03

 Times Cited Count:38 Percentile:92.05(Nanoscience & Nanotechnology)

Journal Articles

Overview of national centralized tokamak program; Mission, design and strategy to contribute ITER and DEMO

Ninomiya, Hiromasa; Akiba, Masato; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hayashi, Nobuhiko; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Inoue, Nobuyuki; et al.

Journal of the Korean Physical Society, 49, p.S428 - S432, 2006/12

To contribute DEMO and ITER, the design to modify the present JT-60U into superconducting coil machine, named National Centralized Tokamak (NCT), is being progressed under nationwide collaborations in Japan. Mission, design and strategy of this NCT program is summarized.

Journal Articles

Overview of the national centralized tokamak programme

Kikuchi, Mitsuru; Tamai, Hiroshi; Matsukawa, Makoto; Fujita, Takaaki; Takase, Yuichi*; Sakurai, Shinji; Kizu, Kaname; Tsuchiya, Katsuhiko; Kurita, Genichi; Morioka, Atsuhiko; et al.

Nuclear Fusion, 46(3), p.S29 - S38, 2006/03

 Times Cited Count:13 Percentile:41.68(Physics, Fluids & Plasmas)

The National Centralized Tokamak (NCT) facility program is a domestic research program for advanced tokamak research to succeed JT-60U incorporating Japanese university accomplishments. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility and mobility is pursued in aspect ratio and shape controllability, feedback control of resistive wall modes, wide current and pressure profile control capability for the demonstration of the high-b steady state.

Journal Articles

Engineering design and control scenario for steady-state high-beta operation in national centralized tokamak

Tsuchiya, Katsuhiko; Akiba, Masato; Azechi, Hiroshi*; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 81(8-14), p.1599 - 1605, 2006/02

 Times Cited Count:1 Percentile:9.94(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Design study of national centralized tokamak facility for the demonstration of steady state high-$$beta$$ plasma operation

Tamai, Hiroshi; Akiba, Masato; Azechi, Hiroshi*; Fujita, Takaaki; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; Hosogane, Nobuyuki; Ichimura, Makoto*; et al.

Nuclear Fusion, 45(12), p.1676 - 1683, 2005/12

 Times Cited Count:15 Percentile:45.44(Physics, Fluids & Plasmas)

Design studies are shown on the National Centralized Tokamak facility. The machine design is carried out to investigate the capability for the flexibility in aspect ratio and shape controllability for the demonstration of the high-beta steady state operation with nation-wide collaboration, in parallel with ITER towards DEMO. Two designs are proposed and assessed with respect to the physics requirements such as confinement, stability, current drive, divertor, and energetic particle confinement. The operation range in the aspect ratio and the plasma shape is widely enhanced in consistent with the sufficient divertor pumping. Evaluations of the plasma performance towards the determination of machine design are presented.

JAEA Reports

Support design study for the Horonobe underground research facility in FY2003/2004

Matsui, Hiroya; MORIOKA, Hiroyuki; Shirato, Nobuaki; Ouchi, Kazutoshi

JNC TN5410 2004-001, 236 Pages, 2004/08

JNC-TN5410-2004-001.pdf:22.79MB

JNC(Japan Nuclear Cycle development institute) has been conducting the project called "Horonobe URL project" in Horonobe-cho, Hokkkaido, Japan. The aim of the project is to establish the scientific and technical basis for geological disposal on sedimentary rock. In the project, a underground facility with 500m depth will be constructed. This report is summarized the results on support design of the planned underground facility based on the data obtained by the several borehole investigations from ground surface. Owing to rational support design, the detailed compartment of the input parameters for the stability analysis in surrounding rock at position of underground facility were made based on the results of borehole investigation in HDB-1, HDB-3, which were drilled near the position. Moreover, the idea of double support system was adopted in this study to minimize the support in underground facility.

Oral presentation

Horonobe Underground Research Laboratory Project synthesis of phase 1 investigations 2001-2005; Development of engineering technologies for the deep geological environment

Sanada, Hiroyuki; Hanakawa, Toshiyuki; Ota, Kunio; Abe, Hironobu; Yamaguchi, Takehiro; Kunimaru, Takanori; Ishii, Eiichi; Kurikami, Hiroshi; Tomura, Goji; Shibano, Kazunori; et al.

no journal, , 

no abstracts in English

7 (Records 1-7 displayed on this page)
  • 1