Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Itayama, Yui*; Davaasuren, D.*; Ochiai, Shinya*; Minami, Masayo*; Masuki, Yuma*; Yoshimizu, Chikage*; Uchida, Mao; Niwa, Masakazu; Tayasu, Ichiro*; Nagao, Seiya*; et al.
Catena, 258, p.109297_1 - 109297_11, 2025/10
Times Cited Count:0Takahashi, Yoshio*; Miura, Hikaru*; Yamada, Shinya*; Sekizawa, Oki*; Nitta, Kiyofumi*; Hashimoto, Tadashi*; Yomogida, Takumi; Yamaguchi, Akiko; Okada, Shinji*; Itai, Takaaki*; et al.
Journal of Hazardous Materials, 495, p.139031_1 - 139031_19, 2025/09
In this presentation, we analyzed the chemical state of cesium in radiocesium-bearing microparticles (CsMPs) released during the 2011 Fukushima Daiichi Nuclear Power Plant accident using high-resolution X-ray absorption spectroscopy (XANES) and micro X-ray fluorescence (
-XRF). The results identified two forms of cesium: one dissolved in glass and the other enriched on the surfaces of internal voids. The latter is considered to have originally existed as a gas and became concentrated during the cooling and solidification of the molten glass. These findings are crucial for understanding the formation process of CsMPs during the accident, as well as for future decommissioning and safety assessments.
Karimi, V.*; Qvistgaard, C. H.*; Schmidt, S.*; Wolfertz, A.*; Parker, J. D.*; Kai, Tetsuya; Hayashida, Hirotoshi*; Shinohara, Takenao; Angelis, S. D.*; Tengattini, A.*; et al.
ACS Applied Materials & Interfaces, 17(36), p.50742 - 50752, 2025/08
Times Cited Count:0
hydridosilicate at high pressures; A Bridge to BaSiH
polyhydrideBeyer, D. C.*; Spektor, K.*; Vekilova, O. Y.*; Grins, J.*; Barros Brant Carvalho, P. H.*; Leinbach, L. J.*; Sannemo-Targama, M.*; Bhat, S.*; Baran, V.*; Etter, M.*; et al.
ACS Omega (Internet), 10(15), p.15029 - 15035, 2025/04
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Hydridosilicates featuring SiH
octahedral moieties represent a rather new class of compounds with potential properties relating to hydrogen storage and hydride ion conductivity. Here, we report on the new representative BaSiH
obtained from reacting the Zintl phase hydride BaSiH
with H
fluid at pressures above 4 GPa and subsequent decompression to ambient pressure. It consists of complex SiH
ions, which are octahedrally coordinated by Ba
counterions. The arrangement of Ba and Si atoms deviates only slightly from an ideal fcc NaCl structure. IR and Raman spectroscopy showed SiH
bending and stretching modes in the ranges 800-1200 and 1400-1800 cm
, respectively. BaSiH
is thermally stable up to 95
C above which decomposition into BaH
and Si takes place. DFT calculations indicated a direct band gap of 2.5 eV. The discovery of BaSiH
consolidates the compound class of hydridosilicates, accessible from hydrogenations of silicides at gigapascal pressures (
10 GPa). The structural properties of BaSiH
suggest that it presents an intermediate (or precursor) for further hydrogenation at considerably higher pressures to the predicted superconducting polyhydride BaSiH
.
Hu, F.-F.*; Qin, T.-Y.*; Ao, N.*; Xu, P. G.; Su, Y. H.; Parker, J. D.*; Shinohara, Takenao; Shobu, Takahisa; Kang, G.-Z.*; Ren, M.-M.; et al.
Journal of Traffic and Transportation Engineering, 25(2), p.75 - 93, 2025/04
In
Ge
Yokoyama, Akira*; Nakachi, Ryu*; Homma, Yoshiya*; Nakamura, Ai*; Shimizu, Yusei*; Li, D.*; Miyake, Atsushi*; Honda, Fuminori*; Aoki, Dai*; Onuki, Yoshichika*; et al.
Journal of the Physical Society of Japan, 94(2), p.023701_1 - 023701_4, 2025/02
Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.
Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12
Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; Kofu, Maiko*; Nirei, Masami; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
Times Cited Count:16 Percentile:93.65(Multidisciplinary Sciences)Fujishima, Yohei*; Anderson, D.*; Abe, Yu*; Alkebsi, L.*; Oka, Toshitaka; Tani, Atsushi*; Kranrod, C.*; Toyoda, Shin*; Hamasaki, Kanya*; Hirota, Seiko*; et al.
Nihon Hoshasen Jiko, Saigai Igakkai Zasshi, 7(1), p.21 - 26, 2024/12
no abstracts in English
Matsuba, Kenichi; Kato, Shinya; Kamiyama, Kenji; Akaev, A. S.*; Vurim, A. D.*; Baklanov, V. V.*
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 7 Pages, 2024/11
During a severe accident in sodium-cooled fast reactors, molten core materials could be discharged from the core region toward the lower sodium region of the reactor vessel through coolant channels, such as control rod guide tubes. Typical SFRs have a sodium plenum with limited depth and volume, such as the core inlet plenum located under the core region. Therefore, it is important to evaluate the coolability of molten core materials discharged into a depth- and volume-limited sodium plenum. In the present study, to deepen the understanding on the coolability of molten core materials discharged into such a sodium plenum, conditions under which molten core materials form solidified fragments were discussed based on an experiment discharging a molten fuel simulant (molten Al2O3) into a test vessel filled with liquid sodium.
Brear, D. J.*; Kondo, Satoru; Sogabe, Joji; Tobita, Yoshiharu*; Kamiyama, Kenji
JAEA-Research 2024-009, 134 Pages, 2024/10
The SIMMER-III/SIMMER-IV computer codes are being used for liquid-metal fast reactor (LMFR) core disruptive accident (CDA) analysis. The sequence of events predicted in a CDA is often influenced by the heat exchanges between LMFR materials, which are controlled by heat transfer coefficients (HTCs) in the respective materials. The mass transfer processes of melting and freezing, and vaporization and condensation are also controlled by HTCs. The complexities in determining HTCs in a multi-component and multi-phase system are the number of HTCs to be defined at binary contact areas of a fluid with other fluids and structure surfaces, and the modes of heat transfer taking into account different flow topologies representing flow regimes with and without structure. As a result, dozens of HTCs are evaluated in each mesh cell for the heat and mass transfer calculations. This report describes the role of HTCs in SIMMER-III/SIMMER-IV, the heat transfer correlations implemented and the calculation of HTCs in all topologies in multi-component, multi-phase flows. A complete description of the physical basis of HTCs and available experimental correlations is contained in Appendices to this report. The major achievement of the code assessment program conducted in parallel with code development is summarized with respect to HTC modeling to demonstrate that the coding is reliable and that the model is applicable to various multi-phase problems with and without reactor materials.
Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; Kofu, Maiko; Nakajima, Kenji; Wei, Y.*; Zhang, W.*; et al.
Nature Physics, 20(7), p.1097 - 1102, 2024/07
Times Cited Count:20 Percentile:96.58(Physics, Multidisciplinary)
Terada, Noriki*; Khalyavin, D. D.*; Manuel, P.*; Asai, Shinichiro*; Masuda, Takatsugu*; Saito, Hiraku*; Nakajima, Taro*; Osakabe, Toyotaka
Physical Review B, 110(2), p.024406_1 - 024406_9, 2024/07
Times Cited Count:1 Percentile:0.00(Materials Science, Multidisciplinary)The frustrated antiferromagnet CuFeO
exhibits pressure-induced complex magnetic phase transitions from the commensurate collinear (CM1) phase to several incommensurate noncollinear phases. To study the effect of high pressure on magnetic interactions, we performed neutron diffraction and inelastic neutron scattering experiments under high-pressure conditions. With increasing pressure, the CM1 ground state becomes less stable against application of a magnetic field even below the critical pressure (
3 GPa), as proved by the significant reduction in the critical magnetic field from
=7.5 T to 4.5 T at 2.1 GPa. Additionally, the energy gap in the spin-wave dispersion relation is reduced from 1.0 to 0.88 meV by the application of a pressure of
= 2.1 GPa. Comparing the experimental results with spin-wave calculations revealed that the change in the spin-wave excitation can be explained by the reduction in either the uniaxial anisotropy term or the degree of separation in the nearest-neighbor exchange interactions.
Mg; Bridging the
and
islands of inversionMadurga, M.*; Christie, J. M.*; Xu, Z.*; Grzywacz, R.*; Poves, A.*; King, T.*; Allmond, J. M.*; Chester, A.*; Cox, I.*; Farr, J.*; et al.
Physical Review C, 109(6), p.L061301_1 - L061301_6, 2024/06
Times Cited Count:2 Percentile:67.63(Physics, Nuclear)no abstracts in English
Yao, D.*; Matsuo, Mamoru; Yokoyama, Takehito*
Applied Physics Letters, 124(16), p.162603_1 - 162603_5, 2024/04
Times Cited Count:7 Percentile:72.08(Physics, Applied)
-odd/
-odd interactions on the 0.75 eV
-wave resonance in
+
forward transmission determined using a pulsed neutron beamNakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Hirota, Katsuya*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.L041602_1 - L041602_4, 2024/04
Times Cited Count:1 Percentile:14.63(Physics, Nuclear)
-wave resonance of 
+
Okudaira, Takuya*; Nakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.044606_1 - 044606_9, 2024/04
Times Cited Count:2 Percentile:67.63(Physics, Nuclear)Rapp, L.*; Matsuoka, Takeshi*; Firestein, K. L.*; Sagae, Daisuke*; Habara, Hideaki*; Mukai, Keiichiro*; Tanaka, Kazuo*; Gamaly, E. G.*; Kodama, Ryosuke*; Seto, Yusuke*; et al.
Physical Review Research (Internet), 6(2), p.023101_1 - 023101_18, 2024/04
It is generally known that irradiating a solid surface with a laser pulse of ultra-relativistic intensity generates a plasma on the surface, which in turn creates an ultrahigh pressure inside. In this study, the crystal structure analysis of high-pressure phases generated inside silicon single-crystals irradiated by this laser was performed using the diffraction system at the Stress and Imaging apparatus of BL22XU, which is a JAEA-BL. The results obtained confirm the existence of high-pressure phases that silicon is said to possess: body-centered, rhombohedral, hexagonal, and tetragonal phases in the interior. We can get the results that the crystal structure of silicon polymorphs of being include body-centered, rhombohedral, hexagonal-diamond, tetragonal exists. In the future, we will accumulate data and apply them to control the internal structure, strength, and functionality of materials.
Shaimerdenov, A.*; Gizatulin, Sh.*; Sairanbayev, D.*; Bugybay, Zh.*; Silnyagin, P.*; Akhanov, A.*; Fuyushima, Takumi; Hirota, Noriaki; Tsuchiya, Kunihiko
Nuclear Instruments and Methods in Physics Research B, 548, p.165235_1 - 165235_6, 2024/03
Times Cited Count:1 Percentile:44.97(Instruments & Instrumentation)Compared to conditions in other types of installations, cable insulation in nuclear reactors is exposed to mixed conditions (high temperatures, radiation, pressure, humidity, aggressive environments) and at the same time they must maintain their performance characteristics for a long time (about 40-50 years). As a result of irradiation to such conditions, the electrical properties of the cable insulation are degraded, which leads to an increase in current loss. This is because the charge is induced by radiation into the insulator. At the WWR-K reactor, studies were started on the radiation resistance of signal cables with two types of mineral insulation (MgO and Al
O
). As part of these studies, new experimental data will be obtained on the behavior of signal cables with mineral insulation of two types in mixed operating conditions (radiation field and high temperature). It is planned to accumulate fluence of fast neutrons
10
cm
in cables. The irradiation temperature will be (500
50)
C). The study of the degradation of the electrical properties of the insulation of signal cables will be carried out in real time (in-situ). For this, a special design of the experimental device and a technique for in-reactor measurement of electrical characteristics were developed. This paper presents a sketch of the capsule design, the results of complex calculations for the development of the capsule design, the expected neutron fluences, the dpa in steel, the technique for in-reactor measurement of electrical characteristics, and a work plan for the future indicating the expected results. The cable irradiation time until the target neutron fluence is reached will be about 100 effective days. This research is funded by the International Scientific-Technical Center.
CoSiYamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02