Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Cai, Y.*; Yoon, S.*; Sheng, Q.*; Zhao, G.*; Seewald, E. F.*; Ghosh, S.*; Ingham, J.*; Pasupathy, A. N.*; Queiroz, R.*; Lei, H.*; et al.
Physical Review B, 111(21), p.214412_1 - 214412_17, 2025/06
Times Cited Count:0Beyer, D. C.*; Spektor, K.*; Vekilova, O. Y.*; Grins, J.*; Barros Brant Carvalho, P. H.*; Leinbach, L. J.*; Sannemo-Targama, M.*; Bhat, S.*; Baran, V.*; Etter, M.*; et al.
ACS Omega (Internet), 10(15), p.15029 - 15035, 2025/04
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Hydridosilicates featuring SiH octahedral moieties represent a rather new class of compounds with potential properties relating to hydrogen storage and hydride ion conductivity. Here, we report on the new representative BaSiH
obtained from reacting the Zintl phase hydride BaSiH
with H
fluid at pressures above 4 GPa and subsequent decompression to ambient pressure. It consists of complex SiH
ions, which are octahedrally coordinated by Ba
counterions. The arrangement of Ba and Si atoms deviates only slightly from an ideal fcc NaCl structure. IR and Raman spectroscopy showed SiH
bending and stretching modes in the ranges 800-1200 and 1400-1800 cm
, respectively. BaSiH
is thermally stable up to 95
C above which decomposition into BaH
and Si takes place. DFT calculations indicated a direct band gap of 2.5 eV. The discovery of BaSiH
consolidates the compound class of hydridosilicates, accessible from hydrogenations of silicides at gigapascal pressures (
10 GPa). The structural properties of BaSiH
suggest that it presents an intermediate (or precursor) for further hydrogenation at considerably higher pressures to the predicted superconducting polyhydride BaSiH
.
Hu, F.-F.*; Qin, T.-Y.*; Ao, N.*; Xu, P. G.; Su, Y. H.; Parker, J. D.*; Shinohara, Takenao; Shobu, Takahisa; Kang, G.-Z.*; Ren, M.-M.; et al.
Journal of Traffic and Transportation Engineering, 25(2), p.75 - 93, 2025/04
Pyeon, C. H.*; Oizumi, Akito; Katano, Ryota; Fukushima, Masahiro
Nuclear Science and Engineering, 199(3), p.429 - 444, 2025/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Experimental analyses of neptunium-237 (Np), americium-241 (
Am), and
Am fission and
Np capture reaction rates are conducted by the Serpent 2 code together with ENDF/B-VIII.0 and JENDL-5, using experimental data at neutron spectra of thermal and intermediate regions obtained in the solid-moderated and solid-reflected cores with highly-enriched uranium fuel at the Kyoto University Critical Assembly. Also, uncertainty quantification of fission and capture reaction rate ratios of test samples of
Np,
Am and
Am with reference samples of uranium-235 (
U) and gold-197 (
Au) are evaluated by the MARBLE code system. In terms of fission reaction rate ratios of
Np/
U,
Am/
U and
Am/
U, a comparison between experiments and Serpent 2 calculations shows an accuracy about 5, 15 and 10%, respectively, together with ENDF/B-VIII.0 and JENDL-5. For capture reaction rate ratios of
Np/
Au, Serpent 2 calculations reveal a fairly good accuracy at the thermal neutron spectrum. The total uncertainties of
Np/
U,
Am/
U and
Am/
U fission reaction rate ratios by MARBLE with the covariance data of ENDF/B-VIII.0 and JENDL-5 are found to be about 4% at most in all cores, except for about 8% of
Am/
U with ENDF/B-VIII.0 at the intermediate neutron spectrum.
Naeem, M.*; Ma, Y.*; Tian, J.*; Kong, H.*; Romero-Resendiz, L.*; Fan, Z.*; Jiang, F.*; Gong, W.; Harjo, S.; Wu, Z.*; et al.
Materials Science & Engineering A, 924, p.147819_1 - 147819_10, 2025/02
Times Cited Count:1 Percentile:0.00(Nanoscience & Nanotechnology)Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Shinohara, Hirofumi*; Suzuki, Katsuyuki*; Shen, H.*
Journal of Nuclear Science and Technology, 10 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The spectrum determination method (SDM) is the method to determine radioactivities by analyzing full spectral shape of - or
rays through least-squares fitting by referring to standard
- and
spectra. In this paper, we have newly applied the SDM to a unified spectrum composed of two spectra measured with a Ge detector and a liquid scintillation counter. By analyzing the unified spectrum, uncertainties of deduced radioactivities have been improved. We applied this method to the unified spectrum including 40 radionuclides with equal intensities, and have deduced their radioactivities correctly.
Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; Kofu, Maiko*; Nirei, Masami; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
Times Cited Count:13 Percentile:94.32(Multidisciplinary Sciences)Nakashima, Shinsuke*; Moro, A.*; Komatsu, Ren*; Faragasso, A.*; Matsuhira, Nobuto*; Woo, H.*; Kawabata, Kuniaki; Yamashita, Atsushi*; Asama, Hajime*
Proceedings of International Topical Workshop on Fukushima Decommissioning Research 2024 (FDR2024) (Internet), 4 Pages, 2024/10
Zhu, L.*; He, H.*; Naeem, M.*; Sun, X.*; Qi, J.*; Liu, P.*; Harjo, S.; Nakajima, Kenji; Li, B.*; Wang, X.-L.*
Physical Review Letters, 133(12), p.126701_1 - 126701_6, 2024/09
Times Cited Count:3 Percentile:43.84(Physics, Multidisciplinary)Endo, Shunsuke; Abe, Ryota*; Fujioka, Hiroyuki*; Ino, Takashi*; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kawamura, Shiori*; Kimura, Atsushi; Kitaguchi, Masaaki*; Kobayashi, Ryuju*; et al.
European Physical Journal A, 60(8), p.166_1 - 166_10, 2024/08
Times Cited Count:2 Percentile:74.11(Physics, Nuclear)Wang, Y. W.*; Xu, P. G.; Su, Y. H.; Ma, Y. L.*; Wang, H. H.*
Physics Examination and Testing, 42(4), p.32 - 41, 2024/08
Suyama, Kenya; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Shimada, Kazuya; Fujita, Tatsuya; Ueki, Taro; Nguyen, H.
JAEA-Conf 2024-001, 40 Pages, 2024/07
The 12th International Conference on Nuclear Criticality Safety (ICNC2023) was held from October 1 to October 6, 2023, at the Sendai International Center (Aobayama, Aoba-ku, Sendai, Miyagi-prefecture 980-0856, Japan), organized by Japan Atomic Energy Agency (JAEA) and co-organized by the Reactor Physics Division of the Atomic Energy Society of Japan (AESJ) and the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (OECD/NEA). 224 presentations passed peer review and 273 technical session registrations, bringing the total number of registered participants to 289, including accompanying persons. Technical tours were also conducted to i) Fukushima Daiichi Nuclear Power Station of TEPCO holdings and Interim Storage Facility Information Center, ii) Nuclear Science Research Institute of JAEA (STACY Renewable Reactor and FCA), iii) NanoTerasu of Tohoku University (synchrotron radiation facility) and Onagawa Nuclear Power Station of Tohoku Electric Power Co., Inc. This report summarizes the conference and compiles the papers that were presented and agreed to be published in the Proceedings.
Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; Kofu, Maiko; Nakajima, Kenji; Wei, Y.*; Zhang, W.*; et al.
Nature Physics, 20(7), p.1097 - 1102, 2024/07
Times Cited Count:12 Percentile:94.31(Physics, Multidisciplinary)Katano, Ryota; Oizumi, Akito; Fukushima, Masahiro; Pyeon, C. H.*; Yamamoto, Akio*; Endo, Tomohiro*
Nuclear Science and Engineering, 198(6), p.1215 - 1234, 2024/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In this study, we have demonstrated that data assimilation using lead and bismuth sample reactivities measured in the Kyoto University Critical Assembly A-core can successfully reduce the uncertainty of the coolant void reactivity in accelerator-driven systems derived from inelastic-scattering cross-sections of lead and bismuth. We re-evaluated and highlighted the experimental uncertainties and correlations of the sample reactivities for the data assimilation formula. We used the MCNP6.2 code to evaluate the sample reactivities and their uncertainties, and performed data assimilation using the reactor analysis code system MARBLE. The high-sensitivity coefficients of the sample reactivities to lead and bismuth allowed us to reduce the cross-section-induced uncertainty of the void reactivity of the accelerator-driven system from 6.3% to 4.8%, achieving a provisional target accuracy of 5% in this study. Furthermore, we demonstrated that the uncertainties arising from other dominant factors, such as minor actinides and steel, can be effectively reduced by using integral experimental data sets for the unified cross-section dataset ADJ2017.
Dronskowski, R.*; Brckel, T.*; Kohlmann, H.*; Avdeev, M.*; Houben, A.*; Meven, M.*; Hofmann, M.*; Kamiyama, Takashi*; Zobel, M.*; Schweika, W.*; et al.
Zeitschrift fr Kristallographie; Crystalline Materials, 239(5-6), p.139 - 166, 2024/06
Because of the neutron's special properties, neutron diffraction may be considered one of the most powerful techniques for structure determination of crystalline and related matter. Neutrons can be released from nuclear fission, from spallation processes, and also from low-energy nuclear reactions, and they can then be used in powder, time-of-flight, texture, single crystal, and other techniques, all of which are perfectly suited to clarify crystal and magnetic structures. With high neutron flux and sufficient brilliance, neutron diffraction also excels for diffuse scattering, for in situ and operando studies as well as for high-pressure experiments of today's materials. In this primer, we summarize the current state of neutron diffraction (and how it came to be), but also look at recent advances and new ideas, e.g., the design of new instruments, and what follows from that.
Ma, Y.*; Naeem, M.*; Zhu, L.*; He, H.*; Sun, X.*; Yang, Z.*; He, F.*; Harjo, S.; Kawasaki, Takuro; Wang, X.-L.*
Acta Materialia, 270, p.119822_1 - 119822_13, 2024/05
Times Cited Count:10 Percentile:94.16(Materials Science, Multidisciplinary)Yuan, X.*; Hu, Q. H.*; Fang, X.*; Wang, Q. M.*; Ma, Y.*; Tachi, Yukio
Sedimentary Geology, 465, p.106633_1 - 106633_14, 2024/05
Times Cited Count:0 Percentile:0.00(Geology)Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; Kofu, Maiko; Nakajima, Kenji; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.
Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03
Times Cited Count:11 Percentile:89.71(Physics, Applied)Shaimerdenov, A.*; Gizatulin, Sh.*; Sairanbayev, D.*; Bugybay, Zh.*; Silnyagin, P.*; Akhanov, A.*; Fuyushima, Takumi; Hirota, Noriaki; Tsuchiya, Kunihiko
Nuclear Instruments and Methods in Physics Research B, 548, p.165235_1 - 165235_6, 2024/03
Times Cited Count:1 Percentile:52.60(Instruments & Instrumentation)Compared to conditions in other types of installations, cable insulation in nuclear reactors is exposed to mixed conditions (high temperatures, radiation, pressure, humidity, aggressive environments) and at the same time they must maintain their performance characteristics for a long time (about 40-50 years). As a result of irradiation to such conditions, the electrical properties of the cable insulation are degraded, which leads to an increase in current loss. This is because the charge is induced by radiation into the insulator. At the WWR-K reactor, studies were started on the radiation resistance of signal cables with two types of mineral insulation (MgO and AlO
). As part of these studies, new experimental data will be obtained on the behavior of signal cables with mineral insulation of two types in mixed operating conditions (radiation field and high temperature). It is planned to accumulate fluence of fast neutrons
10
cm
in cables. The irradiation temperature will be (500
50)
C). The study of the degradation of the electrical properties of the insulation of signal cables will be carried out in real time (in-situ). For this, a special design of the experimental device and a technique for in-reactor measurement of electrical characteristics were developed. This paper presents a sketch of the capsule design, the results of complex calculations for the development of the capsule design, the expected neutron fluences, the dpa in steel, the technique for in-reactor measurement of electrical characteristics, and a work plan for the future indicating the expected results. The cable irradiation time until the target neutron fluence is reached will be about 100 effective days. This research is funded by the International Scientific-Technical Center.
Xu, Z.*; Litzinger, A.*; Sakuma, Kazuyuki; Arora, B.*; Hazenberg, P.*; Wang, L.*; Gonzalez Raymat, H.*; Fabricatore, E.*; Wainwright, Haruko*; Eddy-Dilek, C.*
Proceedings of Waste Management Symposia 2024 (WM2024) (Internet), 14 Pages, 2024/03