Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
川崎 卓郎; 福田 竜生; 山中 暁*; 村山 一郎*; 加藤 孝典*; 馬場 将亮*; 橋本 英樹*; Harjo, S.; 相澤 一也; 田中 裕久*; et al.
Journal of Applied Physics, 137(9), p.094101_1 - 094101_7, 2025/03
被引用回数:0Energy harvesting from waste heat can improve energy efficiency in society. This research investigated the structural behaviors of lead zirconate titanate-based ferroelectric ceramics using operando neutron diffraction measurements under the conditions of two energy-harvesting cycles that involve consideration of the temperature changes of automobile exhaust gas for achieving good harvesting efficiencies. Input and output electrical energies and neutron diffraction data were simultaneously collected. The obtained time-resolved neutron-diffraction intensity data indicate that the applied electric fields and temperature changes induced 90 domain rotation and lattice strain. These structural changes and their variations depending on cycle conditions, such as temperature changes, applied electric fields, and circuit switching, provide insight into the origins of the differences in the behaviors of electrical input/output energies in the cycles.
北條 智彦*; 小山 元道*; 熊井 麦弥*; Zhou, Y.*; 柴山 由樹; 城 鮎美*; 菖蒲 敬久; 齋藤 寛之*; 味戸 沙耶*; 秋山 英二*
ISIJ International, 65(2), p.284 - 296, 2025/02
Stress and plastic strain distributions and those partitioning behaviors of ferrite and retained austenite were investigated in the medium manganese (Mn) and the transformation-induced plasticity-aided bainitic ferrite (TBF) steels, and the martensitic transformation behaviors of retained austenite during Luders elongation and work hardening were analyzed using synchrotron X-ray diffraction at SPring-8. The stress and plastic strain of retained austenite and volume fraction of retained austenite were remarkably changed during Luders deformation in the medium Mn steel, implying that the medium Mn steel possessed inhomogeneous deformation at the parallel part of the tensile specimen. On the other hand, the distributions of the stress, plastic strain and volume fraction of retained austenite were homogeneous and the homogeneous deformation occurred at the parallel part of the tensile specimen at the plastic deformation regime with work hardening in the medium Mn and TBF steels. The martensitic transformation of retained austenite at uders deformation in the medium Mn steel was possessed owing to the application of high stress and preferential deformation at retained austenite, resulting in a significant increase in the plastic deformation and reduction of stress in the retained austenite. The martensitic transformation of retained austenite at the plastic deformation regime with work hardening was induced by the high dislocation density and newly applied plastic deformation in retained austenite in the medium Mn steel whereas the TBF steel possessed gradual transformation of retained austenite which is applied high tensile stress and moderate plastic deformation.
Naeem, M.*; Ma, Y.*; Tian, J.*; Kong, H.*; Romero-Resendiz, L.*; Fan, Z.*; Jiang, F.*; Gong, W.; Harjo, S.; Wu, Z.*; et al.
Materials Science & Engineering A, 924, p.147819_1 - 147819_10, 2025/02
被引用回数:0 パーセンタイル:0.00(Nanoscience & Nanotechnology)Face-centered cubic (fcc) medium-/high-entropy alloys (M/HEAs) typically enhance strength and ductility at cryogenic temperatures via stacking faults, twinning, or martensitic transformation. However, in-situ neutron diffraction on VCoNi MEA at 15 K reveals that strain hardening is driven solely by rapid dislocation accumulation, without these mechanisms. This results in increased yield strength, strain hardening, and fracture strain. The behavior, explained by the Orowan equation, challenges conventional views on cryogenic strengthening in fcc M/HEAs and highlights the role of dislocation-mediated plasticity at low temperatures.
Song, Y.*; Xu, S.*; 佐藤 駿介*; Lee, I.*; Xu, X.*; 大森 俊洋*; 長迫 実*; 川崎 卓郎; 鬼柳 亮嗣; Harjo, S.; et al.
Nature, 638, p.965 - 971, 2025/02
被引用回数:1In advanced applications like aerospace and space exploration, materials must balance lightness, functionality, and extreme thermal fluctuation resistance. Shape-memory alloys show promise with strength, toughness, and substantial strain recovery due to superelasticity, but maintaining low mass and effective operation at cryogenic temperatures is challenging. We hereby introduce a novel shape-memory alloy that adheres to these stringent criteria. Predominantly composed of Ti and Al with a chemical composition of TiAl
Cr
, this alloy 25 is characterized by a low density (4.36
10
kg/m
) and a high specific strength (185
10
Pa
m
/kg) at room temperature, while exhibiting excellent superelasticity. The superelasticity, owing to a reversible stress-induced phase transformation from an ordered body-centered cubic parent phase to an ordered orthorhombic martensite, allows for a recoverable strain exceeding 7%. Remarkably, this functionality persists across a broad range of temperatures, from deep cryogenic 4.2 K to above room temperature, arising from an unconventional temperature dependence of transformation stresses. Below a certain threshold during cooling, the critical transformation stress inversely correlates with temperature. We interpret this behavior from the perspective of a temperature-dependent anomalous lattice instability of the parent phase. This alloy holds potential in everyday appliances requiring flexible strain accommodations, as well as components designed for extreme environmental conditions such as deep space and liquefied gases.
Yoon, J.-Y.*; 竹内 祐太朗*; 武智 涼太*; Han, J.*; 内山 友宏*; 山根 結太*; 金井 駿*; 家田 淳一; 大野 英男*; 深見 俊輔*
Nature Communications (Internet), 16, p.1171_1 - 1171_8, 2025/02
被引用回数:0 パーセンタイル:0.00(Multidisciplinary Sciences)Spin-orbit torque (SOT) provides a promising mechanism for electrically encoding information in magnetic states. Unlike existing schemes, where the SOT is passively determined by the material and device structures, an active manipulation of the intrinsic SOT polarity would allow for flexibly programmable SOT devices. Achieving this requires electrical control of the current-induced spin polarization of the spin source. Here we demonstrate a proof-of-concept current-programmed SOT device. Using a noncollinear-anti-ferromagnetic/nonmagnetic/ferromagnetic MnSn/Mo/CoFeB hetero-structure at zero magnetic eld, we show current-induced switching in the CoFeB layer due to the spin current polarized by the magnetic structure of the Mn
Sn; by properly tuning the driving current, the spin current from the CoFeB further reverses the magnetic orientation of the Mn
Sn, which determines the polarity of the subsequent switching of the CoFeB. This scheme of mutual switching can be achieved in a spin-valve-like simple protocol because each magnetic layer serves as a reversible spin source and target magnetic electrode. It yields intriguing proof-of-concept functionalities for unconventional logic and neuromorphic computing.
下村 浩一郎*; 幸田 章宏*; Pant, A. D.*; 砂川 光*; 藤森 寛*; 梅垣 いづみ*; 中村 惇平*; 藤原 理賀; 反保 元伸*; 河村 成肇*; et al.
Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12
J-PARC Muon Facility: MUSE (Muon Science Establishment) is responsible for the inter-university user program and the operation, maintenance, and construction of the muon beamlines, namely D-line, S-line, U-line, and H-line, along with the muon source at J-PARC Materials and Life Science Facility (MLF). In this paper, recent developments are briefly presented.
Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; 古府 麻衣子*; 楡井 真実; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
被引用回数:7 パーセンタイル:88.60(Multidisciplinary Sciences)Crystalline solids exhibiting inherently low lattice thermal conductivity () are of great importance in applications such as thermoelectrics and thermal barrier coatings. However,
cannot be arbitrarily low and is limited by the minimum thermal conductivity related to phonon dispersions. In this work, we report the liquid-like thermal transport in a well-ordered crystalline CsAg
Te
, which exhibits an extremely low
value of
0.18 Wm
K
. On the basis of first-principles calculations and inelastic neutron scattering measurements, we find that there are lots of low-lying optical phonon modes at
3.1 meV hosting the avoided-crossing behavior with acoustic phonons. These strongly localized modes are accompanied by weakly bound rattling Ag atoms with thermally induced large amplitudes of vibrations. Using the two-channel model, we demonstrate that coupling of the particle-like phonon modes and the heat-carrying wave-like phonons is essential for understanding the low
, which is heavily deviated from the
temperature dependence of the standard Peierls theory. In addition, our analysis indicates that the soft structural framework with liquid-like motions of the fluctuating Ag atoms is the underlying cause that leads to the suppression of the heat conduction in CsAg
Te
. These factors synergistically account for the ultralow
value. Our results demonstrate that the liquid-like heat transfer could indeed exist in a well-ordered crystal.
Vu, TheDang*; 宍戸 寛明*; 相澤 一也; 奥 隆之; 及川 健一; 原田 正英; 小嶋 健児*; 宮嶋 茂之*; 曽山 和彦; 小山 富男*; et al.
IEEJ Transactions on Electrical and Electronic Engineering, 19(11), p.1888 - 1894, 2024/11
被引用回数:0 パーセンタイル:0.00(Engineering, Electrical & Electronic)We proposed a novel superconducting detector called the current-biased kinetic inductance detector (CB-KID) for constructing a neutron transmission imager. We systematically studied the characteristics of the CB-KID to improve spatial resolution down to 10 m in transmission imaging. By analyzing neutron transmission spectra from 1 meV to 500 keV, we identified copper (Cu) and iron (Fe) as major components in commercial nuts and screws. Additionally, we successfully mapped the distribution of the SmSn
compound using selective energy regions of pulsed neutrons and the CB-KID detector. It can reveal transmission spectra across a wide range of energies, from cold-neutron energies (meV) to higher neutron energies (up to 500 keV).
Naeem, M.*; Ma, Y.*; Knowles, A. J.*; Gong, W.; Harjo, S.; Wang, X.-L.*; Romero-Resendiz, L.*; 他6名*
Materials Science & Engineering A, 916, p.147374_1 - 147374_8, 2024/11
被引用回数:2 パーセンタイル:54.79(Nanoscience & Nanotechnology)Heterostructured materials (HSMs) improve the strength-ductility trade-off of alloys, but their cryogenic performance under real-time deformation is unclear. We studied heterostructured CrCoNi medium-entropy alloy via neutron diffraction at 77 K and 293 K. A significant mechanical mismatch between fine and coarse grains led to an exceptional yield strength of 918 MPa at 293 K, increasing to 1244 MPa at 77 K with a uniform elongation of 34%. This strength-ductility synergy at 77 K is attributed to high dislocation pile-up density, increased planar faults, and martensitic transformation. Compared to homogeneous alloys, HSMs show promise for enhancing cryogenic mechanical performance in medium-/high-entropy alloys.
Zheng, X.-G.*; 山内 一宏*; 萩原 雅人; 西堀 英治*; 河江 達也*; 渡邊 功雄*; 内山 智貴*; Chen, Y.*; Xu, C.-N.*
Nature Communications (Internet), 15, p.9989_1 - 9989_12, 2024/11
被引用回数:0 パーセンタイル:0.00(Multidisciplinary Sciences)Like the crystallization of water to ice, magnetic transition occurs at a critical temperature after the slowing down of dynamically fluctuating short-range correlated spins. Here, we report a unique type of magnetic transition characterized by a linear increase in the volume fraction of unconventional static short-range-ordered spin clusters, which triggered a transition into a long-range order at a threshold fraction perfectly matching the bond percolation theory in a new quantum antiferromagnet of pseudo-trigonal Cu(OH)
Cl
. Static short-range order appeared in its Kagome lattice plane below Ca. 20 K from a pool of coexisting spin liquid, linearly increasing its fraction to 0.492(8), then all Kagome spins transitioned into a stable two-dimensional spin order at
_
_
_
_
$. The unconventional static nature of the short-range order was inferred to be due to a pinning effect by the strongly correlated coexisting spin liquids. This work presents a unique magnetic system to demonstrate a complete bond percolation process toward the critical transition. Meanwhile, the unconventionally developed magnetic order in this chemically clean system should shed new light on spin-liquid physics.
Wang, Y. W.*; 徐 平光; Su, Y. H.; Ma, Y. L.*; Wang, H. H.*
Physics Examination and Testing, 42(4), p.32 - 41, 2024/08
With the rapid technological development of large spallation neutron source facilities, the neutron beam flux obtained has been greatly improved and neutron imaging techniques have been further developed. Due to the limitation of neutron beam flux, conventional neutron imaging techniques require neutron beams with a wide wavelength range to obtain relatively high neutron beam flux conditions. Recently, spallation neutron sources using large proton accelerators have made it possible to obtain high-flux pulsed neutron beams. Energy (wavelength) resolved neutron imaging technique based on the Bragg edge effect (neutron Bragg edge transmission imaging technique) is expected to have a wide range of applications because of its high energy resolution, high spatial resolution, and ability to detect crystallographic information. The basic principle of this technique is briefly introduced. Several applications in the evaluation of residual strain, phase composition, dislocation density, and oriented structure are also reviewed to play an active role in promoting the wider applications of related technique.
内田 和杜*; 増田 造*; 原 伸太郎*; 松尾 陽一*; Liu, Y.*; 青木 裕之; 浅野 吉彦*; 宮田 一輝*; 福間 剛士*; 小野 俊哉*; et al.
ACS Applied Materials & Interfaces, 16(30), p.39104 - 39116, 2024/07
被引用回数:1 パーセンタイル:0.00(Nanoscience & Nanotechnology)Zwitterionic MPC polymer coatings effectively deter blood coagulation and protein buildup on medical devices. Researchers synthesized MPC copolymers containing a cross-linking unit (MPTMSi) plus one of four hydrophobic anchoring groups (MPTSSi, BMA, EHMA, LMA) and applied them to PDMS, PP, and PMP. These treatments yielded uniformly hydrophilic, electrically neutral surfaces. Protein adsorption tests showed that PMBSi (BMA) best resisted fluorescently labeled BSA, while PMLSi (LMA) was comparatively weaker, although all four coatings minimized platelet adhesion. Further analyses linked these differences in protein adsorption to varying swelling behaviors in water. Indeed, PMLSi absorbed more water, allowing some protein infiltration yet still repelling platelets. When tested under circulating flow to mimic shear stress, PMMMSi (MPTSSi) and PMLSi coatings on PP and PMP demonstrated excellent durability and platelet repellency. Overall, this study highlights how hydrophobic moieties can boost both hemocompatibility and stability of MPC-based coatings, promising improved performance in medical devices requiring low protein fouling, reduced platelet adhesion, and long-term reliability.
Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; 古府 麻衣子; 中島 健次; Wei, Y.*; Zhang, W.*; et al.
Nature Physics, 20(7), p.1097 - 1102, 2024/07
被引用回数:8 パーセンタイル:95.41(Physics, Multidisciplinary)Emergent quasiparticles with a Dirac dispersion in condensed matter systems can be described by the Dirac equation for relativistic electrons, in analogy with Dirac particles in high-energy physics. For example, electrons with a Dirac dispersion have been intensively studied in electronic systems such as graphene and topological insulators. However, charge is not a prerequisite for Dirac fermions, and the emergence of Dirac fermions without a charge degree of freedom has been theoretically predicted to be realized in Dirac quantum spin liquids. These quasiparticles carry a spin of 1/2 but are charge-neutral and so are called spinons. Here we show that the spin excitations of a kagome antiferromagnet, YCu(OD)
Br
[Br
(OD)
], are conical with a spin continuum inside, which is consistent with the convolution of two Dirac spinons. The predictions of a Dirac spin liquid model with a spinon velocity obtained from spectral measurements are in agreement with the low-temperature specific heat of the sample. Our results, thus, provide spectral evidence for a Dirac quantum spin liquid state emerging in this kagome lattice antiferromagnet. However, the locations of the conical spin excitations differ from those calculated by the nearest-neighbor Heisenberg model, suggesting the Dirac spinons have an unexpected origin.
Li, S.; 山口 義仁; 勝山 仁哉; Li, Y.
Proceedings of ASME 2024 Pressure Vessels & Piping Conference (PVP 2024) (Internet), 8 Pages, 2024/07
Flaws due to stress corrosion cracking (SCC) were recently detected in welded joints of austenitic stainless steel piping lines in pressurized water reactors. Welding-induced high hardness and tensile residual stress are known as one of the main factors affecting SCC. In this work, thermal-elastic-plastic coupled three-dimensional finite element analyses were performed to investigate the distributions of welding residual stress and hardness in butt-welded joints of Type 316 stainless steel. Different heat inputs were applied to the pipe welds, including normal heat input, high heat input and very high heat input. Two different constraint conditions were considered for the welded joints, i.e., both ends free or clamped, the latter indicating that the welded joint is constrained by the surrounding piping system. Simulation results were compared with experimental data such as welding thermal cycle, axial shrinkage and residual stress for validation. The effects of heat input and constraint condition on the welding residual stress and hardness at different sections of the welded joints including the weld start/end location were discussed in detail.
Vu, TheDang*; 宍戸 寛明*; 相澤 一也; 奥 隆之; 及川 健一; 原田 正英; 小嶋 健児*; 宮嶋 茂之*; 曽山 和彦; 小山 富男*; et al.
Journal of Physics; Conference Series, 2776, p.012009_1 - 012009_9, 2024/06
We optimized the design and operating conditions of our superconducting neutron detector to improve spatial resolution. We obtained the best spatial resolution of 10 m when a Gd Siemens star pattern was mounted at close contact with the detector in the cryostat. We compared the effect of a different sample-detector distance on a spatial resolution when the samples were placed either at cryogenic temperature or at room temperature. We found the appearance of clear Bragg dips by the measurements of natural FeS
single crystals and succeeded in mapping the distribution of differently-oriented crystals by choosing several Bragg dips of the FeS
crystals to compose the transmission images.
Ma, Y.*; Naeem, M.*; Zhu, L.*; He, H.*; Sun, X.*; Yang, Z.*; He, F.*; Harjo, S.; 川崎 卓郎; Wang, X.-L.*
Acta Materialia, 270, p.119822_1 - 119822_13, 2024/05
被引用回数:7 パーセンタイル:91.87(Materials Science, Multidisciplinary)We report an in situ neutron diffraction study of 316 L that reveals an extraordinary work-hardening rate (WHR) of 7 GPa at 15 K. Detailed analyses show that the major contribution to the excellent strength and ductility comes from the transformation-induced plasticity (TRIP) effect, introduced by the austenite-to-martensite (
-to-
') phase transition. A dramatic increase in the WHR is observed along with the transformation; the WHR declined when the austenite phase is exhausted. During plastic deformation, the volume-fraction weighted phase stress and stress contribution from the
'-martensite increase significantly. The neutron diffraction data further suggest that the
-to-
' phase transformation was mediated by the
-martensite, as evidenced by the concurrent decline of the
phase with the
phase.
Yuan, X.*; Hu, Q. H.*; Fang, X.*; Wang, Q. M.*; Ma, Y.*; 舘 幸男
Sedimentary Geology, 465, p.106633_1 - 106633_14, 2024/05
被引用回数:0 パーセンタイル:0.00(Geology)Archie's cementation factor, m, is a critical parameter for petrophysical studies, and the value is influenced by several factors such as the shape, type, and size of grains, degrees of diagenesis, and associated pore structure. Using integrated experimental and theoretical approaches, the goal of this study is to obtain the cementation factor of rocks (both reservoir rock and caprock) and assess the impact of diagenesis processes on the values of the cementation factor. Thirteen samples of geologically diverse rocks (six mudstones, four fossiliferous limestones, two marbles, and one sandstone) were selected to achieve these research objectives. Two approaches, the diffusion of gas tracers and the Bosanquet formula calculation using pore-throat sizes from mercury intrusion porosimetry analyses, were used to derive the cementation factors of these rock samples. These rocks were categorized into two groups based on the correlation between average pore-throat diameter and diffusivity, and an exponential-law relationship between the cementation factor and porosity was determined for these sample groups. In addition, thin-section petrography and field emission-scanning electron microscopy observations were utilized to investigate diagenetic processes, with four diagenetic patterns being established: (1) strong compaction, strong cementation, and weak dissolution-diagenesis pattern; (2) weak compaction, medium cementation, and weak dissolution-diagenesis pattern; (3) weak compaction, medium cementation, and strong dissolution-diagenesis pattern; and (4) fracture-matrix pattern. The results indicated that diagenetic processes and microfractures contribute to the variability in the cementation factors in these rock samples.
勝又 哲裕*; 鈴木 涼*; 佐藤 直人*; 小田 良哉*; 本山 慎吾*; 鈴木 俊平*; 中島 護*; 稲熊 宜之*; 森 大輔*; 相見 晃久*; et al.
Chemistry of Materials, 36(8), p.3697 - 3704, 2024/04
被引用回数:0 パーセンタイル:0.00(Chemistry, Physical)ペロブスカイト型酸窒化物のBaFeOFを高圧合成によって作製した。得られた物質はSHGシグナルが観測されたことから自発分極の存在を示唆していたため、分極発現機構を放射光高エネルギーX線回折で調べた。得られた2体相関分布関数をフィットした結果、方位の異なる局所的な分極発現機構を見出した。BaFeO
Fは磁性材料でもあるため、磁気ドメインと強誘電ドメインが共存していると考えられる。
Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; 古府 麻衣子; 中島 健次; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.
Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03
被引用回数:7 パーセンタイル:94.53(Physics, Applied)The desire for intrinsically low lattice thermal conductivity () in thermoelectrics motivates numerous efforts on understanding the microscopic mechanisms of heat transport in solids. Here, based on theoretical calculations, we demonstrate that
-MgAgSb hosts low-energy localized phonon bands and avoided crossing of the rattler modes, which coincides with the inelastic neutron scattering result. Using the two-channel lattice dynamical approach, we find, besides the conventional contribution (
70% at 300 K) from particlelike phonons propagating, the coherence contribution dominated by the wavelike tunneling of phonons accounts for
30% of total
at 300 K. By considering dual contributions, our calculated room-temperature
of 0.64 Wm
K
well agrees with the experimental value of 0.63 Wm
K
. More importantly, our computations give a nonstandard
dependence, perfectly explaining the abnormal temperature-trend of
in experiment for
-MgAgSb. By molecular dynamics simulation, we reveal that the structure simultaneously has soft crystalline sublattices with the metavalent bonding and fluctuating liquid-like sublattices with thermally induced large amplitude vibrations. These diverse forms of chemical bonding arouse mixed part-crystal part-liquid state, scatter strongly heat-carrying phonons, and finally produce extremely low
. The fundamental research from this study will accelerate the design of ultralow-
materials for energy-conversion applications.
Li, N.*; Sun, Y.*; 中島 邦久; 黒崎 健*
Journal of Nuclear Science and Technology, 61(3), p.343 - 353, 2024/03
被引用回数:1 パーセンタイル:0.00(Nuclear Science & Technology)福島原子力発電所(1F)事故では、表面積の大きなステンレス鋼(SS304)製の気水分離器や蒸気乾燥器にセシウムが大量に残っている可能性がある。そして、1F廃止措置においてこのようなCsは、放射性粉塵を生成する可能性があるため、安全上問題になることが予想される。しかし、水酸化セシウム(CsOH)の化学吸着により生成した酸化被膜の付着強度については、まだ、明らかになっていない。本研究では、CsOHによる化学吸着がどの程度酸化被膜の付着強度に影響するかスクラッチ試験機を用いて調査した。その結果、CsOHの化学吸着により酸化被膜の付着強度は低下したが、剥離させることはできなかった。