Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 791

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Pulsed muon facility of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.

Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12

Journal Articles

Archie's cementation factors for natural rocks; Measurements and insights from diagenetic perspectives

Yuan, X.*; Hu, Q. H.*; Fang, X.*; Wang, Q. M.*; Ma, Y.*; Tachi, Yukio

Sedimentary Geology, 465, p.106633_1 - 106633_14, 2024/05

Journal Articles

Crystal-liquid duality driven ultralow two-channel thermal conductivity in $$alpha$$-MgAgSb

Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; Kofu, Maiko; Nakajima, Kenji; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.

Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03

 Times Cited Count:0 Percentile:0.01(Physics, Applied)

Journal Articles

Quantum critical behavior of the hyperkagome magnet Mn$$_3$$CoSi

Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.

Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02

Journal Articles

Probing deformation behavior of a refractory high-entropy alloy using ${it in situ}$ neutron diffraction

Zhou, Y.*; Song, W.*; Zhang, F.*; Wu, Y.*; Lei, Z.*; Jiao, M.*; Zhang, X.*; Dong, J.*; Zhang, Y.*; Yang, M.*; et al.

Journal of Alloys and Compounds, 971, p.172635_1 - 172635_7, 2024/01

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Journal Articles

Stress corrosion cracking induced by the combination of external and internal hydrogen in Al-Zn-Mg-Cu alloy

Tang, J.*; Wang, Y.*; Fujihara, Hiro*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Ebihara, Kenichi; Takeuchi, Akihisa*; Uesugi, Masayuki*; Toda, Hiroyuki*

Scripta Materialia, 239, p.115804_1 - 115804_5, 2024/01

 Times Cited Count:0 Percentile:0(Nanoscience & Nanotechnology)

Stress corrosion cracking (SCC) behaviors induced by the combination of external and internal hydrogen (H) in an Al-Zn-Mg-Cu alloy were systematically investigated via in situ 3D characterization techniques. SCC of the Al-Zn-Mg-Cu alloy could initiate and propagate in the potential crack region where the H concentration exceeded a critical value, in which the nanoscopic H-induced decohesion of $$eta$$-MgZn$$_2$$ precipitates resulted in macroscopic cracking. External H that penetrated the alloy from the environment played a crucial role during the SCC of the Al-Zn-Mg-Cu alloy by generating gradient-distributed H-affected zones near the crack tips, which made Al alloys in water environment more sensitive to SCC. Additionally, the pre-existing internal H was driven toward the crack tips during plastic deformation. It was involved in the SCC and made contributions to both the cracks initiation and propagation.

Journal Articles

Transient analyses of hydraulic head in the fault slip experiments in fracture zones of Shionohira and Kuruma Faults

Wakahama, Hiroshi*; Nojo, Haruka*; Aoki, Kazuhiro; Imai, Hirotaro; Guglielmi, Y.*; Cook, P.*; Soom, F.*

Oyo Chishitsu, 64(5), p.236 - 254, 2023/12

Upon the Hamadori earthquake (Mw 6.7) of 11 April 2011, coseismic surface deformation of 14 km running NNW to SSE in southeast Fukushima Prefecture occurred and was newly named the Shionohira Fault. However, no surface deformation was observed along the Kuruma Fault which is a southern extension of the Shionohira Fault. Fault injection tests using SIMFIP method at the Shionohira site on the former active segment and the Minakamikita site on the latter inactive segment were conducted to evaluate the activity of the two faults. Based on hydraulic responses to water injection into the fault rupture zone in the monitoring boreholes at the two sites, hydraulic properties of the area across the fault zone were estimated using the GRF model (Barker, 1988). The results obtained on hydraulic conductivity, specific storage and flow dimension were consistent with those in the domestic and international literature. The hydraulic conductivity and specific storage were larger in Shionohira than in Minakamikita. The flow dimension of Shionohira was three-dimensional, while that of Minakamikita was found to be a two-dimensional fractional flow. In addition, it is understood that the volumetric expansion occurs in the former site in the triaxial direction and the latter in the uniaxial with the comparison between the uniaxial expansion coefficient calculated from the results of SIMFIP displacement measurements and the specific storage in the hydraulic analysis. The difference in the hydraulic parameters between the two sites corresponded to the difference in the spatial development of fractures considered to be the "water passway," indicating the possibility of a correlation between the parameters and the different possible causes for fault activity at the two sites.

Journal Articles

Neutron-production double-differential cross sections of $$^{rm nat}$$Pb and $$^{209}$$Bi in proton-induced reactions near 100 MeV

Iwamoto, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Yashima, Hiroshi*; Nishio, Katsuhisa; Sugihara, Kenta*; $c{C}$elik, Y.*; et al.

Nuclear Instruments and Methods in Physics Research B, 544, p.165107_1 - 165107_15, 2023/11

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The lack of double-differential cross-section (DDX) data for neutron production below the incident proton energy of 200 MeV hinders the validation of spallation models in technical applications, such as research and development of accelerator-driven systems (ADSs). The present study aims to obtain experimental DDX data for ADS spallation target materials in this energy region and identify issues related to the spallation models by comparing them with the analytical predictions. The DDXs for the ($$p, xn$$) reactions of $$^{rm nat}$$Pb and $$^{209}$$Bi in the 100-MeV region were measured over an angular range of 30$$^{circ}$$ to 150$$^{circ}$$ using the time-of-flight method. The measurements were conducted at Kyoto University utilizing the FFAG accelerator. The DDXs obtained were compared with calculation results from Monte Carlo-based spallation models and the evaluated nuclear data library, JENDL-5. Comparison between the measured DDX and analytical values based on the spallation models and evaluated nuclear data library indicated that, in general, the CEM03.03 model demonstrated the closest match to the experimental values. Additionally, the comparison highlighted several issues that need to be addressed in order to improve the reproducibility of the proton-induced neutron-production DDX in the 100 MeV region by these spallation models and evaluated nuclear data library.

Journal Articles

Extraction of $$^{99}$$Mo hot atoms made by a neutron capture method from $$alpha$$-MoO$$_{3}$$ to water

Quach, N. M.*; Ngo, M. C.*; Yang, Y.*; Nguyen, T. B.*; Nguyen, V. T.*; Fujita, Yoshitaka; Do, T. M. D.*; Nakayama, Tadachika*; Suzuki, Tatsuya*; Suematsu, Hisayuki*

Journal of Radioanalytical and Nuclear Chemistry, 332(10), p.4057 - 4064, 2023/10

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

Technetium-99m ($$^{99m}$$Tc) is the most widely used medical radioisotope in the world and is produced from molybdenum-99 ($$^{99}$$Mo). Production of $$^{99}$$Mo via the neutron capture method draws attention as an alternative to fission-derived $$^{99}$$Mo due to non-proliferation issues, but the specific radioactivity of $$^{99}$$Mo is extremely low. In this work, a porous $$alpha$$-MoO$$_{3}$$ wire was prepared as an irradiation target in order to improve the specific activity by extracting $$^{99}$$Mo. Porous $$alpha$$-MoO$$_{3}$$ wire is synthesized from Mo metal wire by a two-step heating procedure. The hot atom effect of $$^{99}$$Mo was confirmed by activity and isotope measurements of the porous $$alpha$$-MoO$$_{3}$$ wire after neutron irradiation and the water used for extraction. In term of the extraction effectiveness, the effectiveness of $$^{99}$$Mo extraction in the porous $$alpha$$-MoO$$_{3}$$ wire was comparable to that of commercial $$alpha$$-MoO$$_{3}$$ powder.

Journal Articles

OECD/NEA ARC-F Project; Summary of fission product transport

Lind, T.*; Kalilainen, J.*; Marchetto, C.*; Beck, S.*; Nakamura, Koichi*; Kino, Chiaki*; Maruyama, Yu; Kido, Kentaro; Kim, S. I.*; Lee, Y.*; et al.

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.4796 - 4809, 2023/08

Journal Articles

Modeling of hardness and welding residual stress in Type 316 stainless steel components for the assessment of stress corrosion cracking

Li, S.; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.; Deng, D.*

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 7 Pages, 2023/07

Journal Articles

Development of stress intensity factor solution for surface crack at nozzle corner in reactor pressure vessel

Yamaguchi, Yoshihito; Takamizawa, Hisashi; Katsuyama, Jinya; Li, Y.

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 9 Pages, 2023/07

The stress intensity factor (SIF) for crack at nozzle corner is a key parameter in structural integrity assessment of nozzle in reactor pressure vessel (RPV). Although various SIF solutions for surface cracks at nozzle corners have been proposed, most of them are only focusing on the deepest point of the crack, and the information about geometric dimension of the nozzle corner is not clear. According to the previous fatigue test results regarding the surface crack at the nozzle corner, the amounts of crack growth at the surface points were larger than that at the deepest point of the crack. Such results imply that SIFs at the surface points may be higher than that at the deepest point. To increase the reliability of the structural integrity assessment, it is necessary to provide SIF solutions for both surface and deepest points. In this study, SIF solutions for two surface points and the deepest point of surface crack at nozzle corners are developed through finite element analyses and the solutions are provided corresponding to the geometric dimensions of nozzle corner and crack size.

Journal Articles

Cu $$K$$-edge X-ray absorption fine structure study of $$T'$$-type $$RE$$$$_{2}$$CuO$$_{4+alpha-delta}$$ ($$RE$$ = Rare Earth); Toward unified understanding of electronic state of $$T'$$-type cuprate

Chen, Y.*; Asano, Shun*; Wang, T.*; Xie, P.*; Kitayama, Shinnosuke*; Ishii, Kenji*; Matsumura, Daiju; Tsuji, Takuya; Taniguchi, Takanori*; Fujita, Masaki*

JPS Conference Proceedings (Internet), 38, p.011050_1 - 011050_6, 2023/05

Journal Articles

Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag$$_{8}$$SnSe$$_{6}$$

Ren, Q.*; Gupta, M. K.*; Jin, M.*; Ding, J.*; Wu, J.*; Chen, Z.*; Lin, S.*; Fabelo, O.*; Rodriguez-Velamazan, J. A.*; Kofu, Maiko; et al.

Nature Materials, 22, p.999 - 1006, 2023/05

 Times Cited Count:21 Percentile:99.22(Chemistry, Physical)

Journal Articles

A Large-scale particle-based simulation of heat and mass transfer behavior in EAGLE ID1 in-pile test

Zhang, T.*; Yao, Y.*; Morita, Koji*; Liu, X.*; Liu, W.*; Imaizumi, Yuya; Kamiyama, Kenji

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

Journal Articles

Pressure-modulated magnetism and negative thermal expansion in the Ho$$_2$$Fe$$_{17}$$ intermetallic compound

Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.

Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04

 Times Cited Count:1 Percentile:0(Chemistry, Physical)

Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in Ho$$_2$$Fe$$_{17}$$ on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.

Journal Articles

Elastic properties of nuclear pasta in a fully three-dimensional geometry

Xia, C.-J.*; Maruyama, Toshiki; Yasutake, Nobutoshi*; Tatsumi, Toshitaka*; Zhang, Y.-X.*

Physics Letters B, 839, p.137769_1 - 137769_5, 2023/04

 Times Cited Count:1 Percentile:68.16(Astronomy & Astrophysics)

Journal Articles

Present status of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.

Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03

 Times Cited Count:0 Percentile:0.2(Physics, Applied)

JAEA Reports

Guideline on structural integrity assessment for reactor pressure vessel in domestic light water reactor based on probabilistic fracture mechanics

Lu, K.; Katsuyama, Jinya; Takamizawa, Hisashi; Li, Y.

JAEA-Research 2022-012, 39 Pages, 2023/02

JAEA-Research-2022-012.pdf:1.72MB

For reactor pressure vessels (RPVs) in the light water reactors, the fracture toughness decreases due to the neutron irradiation embrittlement with operating years. In Japan, to prevent RPVs from a nil-ductile fracture, deterministic fracture mechanics methods in accordance with the codes provided by the Japan Electric Association are performed for assessing the structural integrity of RPVs under the pressurized thermal shock (PTS) events by taking the neutron irradiation embrittlement into account. On the other hand, in recent years, probabilistic methodologies for PTS evaluation are introduced into regulations in the United States and some European countries. For example, in the United States, a PTS screening criterion related to the reference temperature based on the probabilistic method is stipulated. If the screening criterion is not satisfied, it is allowable to perform the evaluation based on the probabilistic method by calculating numerical index such as through-wall crack frequency (TWCF). In addition, the reduction of non-destructive examination extent or extension of examination intervals for RPV welds have been discussed based on the probabilistic method. Here, the probabilistic method is a structural integrity assessment method based on probabilistic fracture mechanics (PFM) which is rational in calculating the failure probability of components by considering uncertainties of various factors related to the aged degradation due to the long-term operation. Based on these backgrounds, we developed a PFM analysis code PASCAL and released a guideline on structural integrity assessment based on PFM by reflecting the latest knowledge and expertise in 2017. Here, the main analysis target was the RPV of pressurized water rector considering neutron irradiation embrittlement and PTS events in the structural integrity assessment of RPVs. The objective of the guideline is that persons who have knowledge on the fracture mechanics can carry out the PFM analyses and

JAEA Reports

User's manual and analysis methodology of probabilistic fracture mechanics analysis code PASCAL Ver.5 for reactor pressure vessels

Takamizawa, Hisashi; Lu, K.; Katsuyama, Jinya; Masaki, Koichi*; Miyamoto, Yuhei*; Li, Y.

JAEA-Data/Code 2022-006, 221 Pages, 2023/02

JAEA-Data-Code-2022-006.pdf:4.79MB

As a part of the structural integrity assessment research for aging light water reactor (LWR) components, a probabilistic fracture mechanics (PFM) analysis code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed in Japan Atomic Energy Agency. The PASCAL code can evaluate failure probabilities and failure frequencies of core region in reactor pressure vessel (RPV) under transients by considering the uncertainties of influential parameters. The continuous development of the code aims to improve the reliability by introducing the analysis methodologies and functions base on the state-of-the-art knowledge in fracture mechanics and domestic data. In the first version of PASCAL, which was released in FY2000, the basic framework was developed for analyzing failure probabilities considering pressurized thermal shock events for RPVs in pressurized water reactors (PWRs). In PASCAL Ver. 2 released in FY 2006, analysis functions including the evaluation methods for embedded cracks and crack detection probability models for inspection were introduced. In PASCAL Ver. 3 released in FY 2010, functions considering weld-overlay cladding on the inner surface of RPV were introduced. In PASCAL Ver. 4 released in FY 2017, we improved several functions such as the stress intensity factor solutions, probabilistic fracture toughness evaluation models, and confidence level evaluation function by considering epistemic and aleatory uncertainties related to influential parameters. In addition, the probabilistic calculation method was also improved to speed up the failure probability calculations. To strengthen the practical applications of PFM methodology in Japan, PASCAL code has been improved since FY 2018 to enable PFM analyses of RPVs subjected to a broad range of transients corresponding to both PWRs and boiling water reactors, including pressurized thermal shock, low-temperature over pressure, and normal operational transients. In particular, the stress intensi

791 (Records 1-20 displayed on this page)