Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okumura, Yoshikazu; Gobin, R.*; Knaster, J.*; Heidinger, R.*; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; et al.
Review of Scientific Instruments, 87(2), p.02A739_1 - 02A739_3, 2016/02
Times Cited Count:8 Percentile:38.68(Instruments & Instrumentation)IFMIF is an accelerator based neutron facility having two set of linear accelerators each producing 125mA/CW deuterium ion beams (250mA in total) at 40MeV. The LIPAc (Linear IFMIF Prototype Accelerator) being developed in the IFMIF-EVEDA project consists of an injector, a RFQ accelerator, and a part of superconducting Linac, whose target is to demonstrate 125mA/CW deuterium ion beam acceleration up to 9MeV. The injector has been developed in CEA Saclay and already demonstrated 140mA/100keV deuterium beam. The injector was disassembled and delivered to the International Fusion Energy Research Center (IFERC) in Rokkasho, Japan, and the commissioning has started after its reassembly 2014; the first beam production has been achieved in November 2014. Up to now, 100keV/120mA/CW hydrogen ion beam has been produced with a low beam emittance of 0.2 .mm.mrad (rms, normalized).
Okumura, Yoshikazu; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; Gobin, R.*; Harrault, F.*; Heidinger, R.*; et al.
Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.203 - 205, 2015/09
Under the framework of Broader Approach (BA) agreement between Japan and Euratom, IFMIF/EVEDA project was launched in 2007 to validate the key technologies to realize IFMIF. The most crucial technology to realize IFMIF is two set of linear accelerator each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator, whose target is 125mA/CW deuterium ion beam acceleration up to 9MeV, is being developed in International Fusion Research Energy Center (IFERC) in Rokkasho, Japan. The injector developed in CEA Saclay was delivered in Rokkasho in 2014, and is under commissioning. Up to now, 100keV/120mA/CW hydrogen ion beams and 100keV/90mA/CW duty deuterium ion beams are successfully produced with a low beam emittance of 0.21 .mm.mrad (rms, normalized). Delivery of RFQ components will start in 2015, followed by the installation of RF power supplies in 2015.
Maebara, Sunao; Sukegawa, Keiichi*; Tadano, Shuya*; Kasugai, Atsushi; Suzuki, Hiromitsu; Abe, Kazuhiko*; Oku, Ryuji*; Sugimoto, Masayoshi
Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1140 - 1142, 2015/09
For the IFMIF/EVEDA accelerator prototype RFQ linac, the operation frequency of 175MHz was selected to accelerate a large current of 125mA. The driving RF power of 1.28MW by 8 RF input couplers has to be injected to the RFQ cavity for CW operation mode. For each RF input coupler, nominal RF power of 160kW and maximum transmitted RF power of 200kW are required. For this purpose, an RF input coupler with cooling functions was designed, based on a 6 1/8 inch co-axial waveguide, and the RF coupler was manufactured by way of trial. For the trial RF coupler, high-power tests using a high voltage standing wave on a high-Q load circuit wave were carried out, and a 200kW-14 sec CW operation were performed after four days of RF aging. No RF contact defects, unnecessary low-Q value and extraordinary outgassing were observed. This report describes the high-power tests of the RF input coupler.
Takahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Sakaki, Hironao; Suzuki, Hiromitsu; Sugimoto, Masayoshi
Fusion Engineering and Design, 89(9-10), p.2066 - 2070, 2014/10
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Maebara, Sunao; Antonio, P.*; Ichikawa, Masahiro; Takahashi, Hiroki; Suzuki, Hiromitsu; Sugimoto, Masayoshi
Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.561 - 563, 2014/06
no abstracts in English
Takahashi, Hiroki; Kojima, Toshiyuki; Narita, Takahiro; Maebara, Sunao; Sakaki, Hironao; Suzuki, Hiromitsu
Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.724 - 727, 2014/06
no abstracts in English
Takahashi, Hiroki; Maebara, Sunao; Sakaki, Hironao; Ichikawa, Masahiro; Suzuki, Hiromitsu; Sugimoto, Masayoshi
Progress in Nuclear Science and Technology (Internet), 4, p.261 - 263, 2014/04
An development of accelerator-based neutron irradiation facility is planning to develop materials for a demonstration fusion reactor. To obtain a 14 MeV neutron energy using the neutron-generating D-Li stripping reaction, an injection into liquid lithium flow by a 40 MeV deuteron beam is employed in IFMIF design concept. In the acceleration of deuteron beam, the activation due to the beam loss is critical issue. The activation analyses for the air in an accelerator vault are carried out by PHITS code and DCHAIN code using the experimental data for deuteron induced thick target neutron yield at 5 MeV and 9 MeV for source term.
Maebara, Sunao; Palmieri, A.*; Mereu, P.*; Ichikawa, Masahiro; Takahashi, Hiroki; Comunian, M.*; Suzuki, Hiromitsu; Pisent, A.*; Sugimoto, Masayoshi
Fusion Engineering and Design, 88(9-10), p.2740 - 2743, 2013/10
Times Cited Count:3 Percentile:25.48(Nuclear Science & Technology)Takahashi, Hiroki; Kojima, Toshiyuki; Narita, Takahiro; Tsutsumi, Kazuyoshi; Maebara, Sunao; Sakaki, Hironao; Nishiyama, Koichi
Fusion Engineering and Design, 88(9-10), p.2736 - 2739, 2013/10
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)For radiation safety of the Linear IFMIF Prototype Accelerator, -ray and neutron area monitoring system are designed. This system monitors and records the measured data by using both a supervisory board in the access room and central control system. The interlock signals are sent to Personnel Protection System (PPS) and Machine Protection System (MPS) when the integrated dose value exceeds a threshold value. After receiving them, the PPS and the MPS immediately inhibit the beam operation for secure radiation safety. This monitoring system is designed to achieve a high reliability for data transfer using hardwired interlock signals and the performance of data communication between area monitoring system and control system.
Takahashi, Hiroki; Maebara, Sunao; Sakaki, Hironao; Suzuki, Hiromitsu; Sugimoto, Masayoshi
JAEA-Conf 2013-002, p.109 - 112, 2013/10
Maebara, Sunao; Ichikawa, Masahiro
Proceedings of 3rd International Particle Accelerator Conference (IPAC '12) (Internet), p.3284 - 3286, 2013/07
Maebara, Sunao; Ichikawa, Masahiro; Palmieri, A.*
Proceedings of 3rd International Particle Accelerator Conference (IPAC '12) (Internet), p.3287 - 3289, 2012/09
Takahashi, Hiroki; Maebara, Sunao; Sakaki, Hironao; Hirabayashi, Keiichi*; Hidaka, Kosuke*; Shigyo, Nobuhiro*; Watanabe, Yukinobu*; Sagara, Kenshi*
Fusion Engineering and Design, 87(7-8), p.1235 - 1238, 2012/08
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)The Engineering Validation of the IFMIF/EVEDA prototype accelerator, up to 9 MeV by supplying the deuteron beam of 125 mA, will be performed at the BA site in Rokkasho. A design of this area monitoring system, comprising of Si semiconductors and ionization chambers for covering wide energy spectrum of -rays and He counters for neutrons, is now in progress. To establish an applicability of this monitoring system, photon and neutron energies have to be suppressed to the detector ranges of 1.5 MeV and 15 MeV, respectively. For this purpose, the reduction of neutron and photon energies throughout shield of water in a beam dump and concrete layer is evaluated by PHITS code, using the experimental data of neutron source spectra. In this article, a similar model using the beam dump structure and the position with a degree of leaning for concrete wall in the accelerator vault is used, and their energy reduction including the air is evaluated.
Takahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Kubo, Takashi; Sakaki, Hironao; Takeuchi, Hiroshi; Shidara, Hiroyuki; Hirabayashi, Keiichi*; Hidaka, Kosuke*; Shigyo, Nobuhiro*; et al.
Fusion Engineering and Design, 86(9-11), p.2795 - 2798, 2011/10
Times Cited Count:2 Percentile:18.18(Nuclear Science & Technology)In the IFMIF/EVEDA accelerator, the engineering validation up to 9 MeV by employing the deuteron beam of 125 mA are planning at the BA site in Rokkasho, Aomori, Japan, the personnel protection system (PPS) is indispensable. The PPS inhibit the beam by receiving the interlock signal from the -ray and neutron monitoring system. The -ray and neutron detection level which is planned to be adopted are "80 keV to 1.5 MeV (-ray)" and "0.025 eV to 15 MeV (neutron)". For the present shielding design, it is absolutely imperative for the safety review to validate the shielding ability which makes detection level lower than these -ray and neutron detector. For this purpose, the energy reduction of neutron and photon for water and concrete is evaluated by PHITS code. From the calculating results, it is found that the photon energy range extended to 10 MeV by water and concrete shielding material only, an additional shielding to decrease the photon energy of less than 1.5 MeV is indispensable.
Maebara, Sunao; Takahashi, Hiroki; Sakaki, Hironao; Hirabayashi, Keiichi*; Hidaka, Kosuke*; Shigyo, Nobuhiro*; Watanabe, Yukinobu*; Sagara, Kenshi*
JAEA-Conf 2011-002, p.199 - 204, 2011/09
Maebara, Sunao
JAEA-Conf 2011-002, p.41 - 46, 2011/09
Takahashi, Hiroki; Kojima, Toshiyuki; Tsutsumi, Kazuyoshi; Narita, Takahiro; Nishiyama, Koichi; Sakaki, Hironao; Maebara, Sunao
Proceedings of 2nd International Particle Accelerator Conference (IPAC 2011) (Internet), p.1734 - 1736, 2011/09
Control system for the IFMIF/EVEDA prototype accelerator consists of six subsystems; Central Control System (CCS), Local Area Network (LAN), Personnel Protection System (PPS), Machine Protection System (MPS), Timing System (TS) and Local Control System (LCS). The Prototype Accelerator provides the deuteron beam with the beam power more than 1 MW, and this control system is required the high reliability and usability to perform various operation modes for beam commissioning. To satisfy these requirements, we are developing mainly PPS, MPS and TS at the beginning. This paper presents the status of hardware development of the PPS, MPS and TS.
Maebara, Sunao
Proceedings of 2nd International Particle Accelerator Conference (IPAC 2011) (Internet), p.101 - 103, 2011/09
In the design of prototype RFQ linac for the IFMIF/EVEDA Project, a coupled cavity type of RFQ, which has a longitudinal length of 9.78 m, was proposed to accelerate deuteron beam up to 5 MeV. The operation frequency of 175 MHz was selected to accelerate a large current of 125 mA in CW mode. The driving RF power of 1.28 MW by 8 RF input couplers has to be injected to the RFQ cavity. As the RF input coupler design, RF losses including a loop antenna and an RF vacuum window, based on a 6 1/8 inch co-axial waveguide were calculated. In this conference, these results and thermal analysis results in CW operation mode will be presented in details.
Shigyo, Nobuhiro*; Hidaka, Kosuke*; Hirabayashi, Keiichi*; Nakamura, Yasuhiro*; Moriguchi, Daisuke*; Kumabe, Masahiro*; Hirano, Hidetaka*; Hirayama, Shusuke*; Naito, Yuki*; Motooka, Chikahide*; et al.
Journal of the Korean Physical Society, 59(2), p.1725 - 1728, 2011/08
Onishi, Seiki; Maebara, Sunao; Sakaki, Hironao; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara
Journal of Plasma and Fusion Research SERIES, Vol.9, p.190 - 192, 2010/08
A new deuteron accelerator is planned to be build at Rokkasho-site in IFMIF/EVEDA and its shielding design is required urgently. Therefore, a shielding analysis has done with the prototype model of IFMIF/EVEDA accelerator vault by the Monte-Carlo transport calculation code, MCNP5, and cross section library, FENDL/MC-2.1. The neutron dose rates become 0.5 Sv/h at the side of the beam dump and 0.05 Sv/h at the center of the beam axis. Those are smaller than the limitation dose rate of the regularly accessible controlled area, 25 Sv/h.