Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kamide, Hideki; Kawasaki, Nobuchika; Hayafune, Hiroki; Kubo, Shigenobu; Chikazawa, Yoshitaka; Maeda, Seiichiro; Sagayama, Yutaka; Nishihara, Tetsuo; Sumita, Junya; Shibata, Taiju; et al.
Jisedai Genshiro Ga Hiraku Atarashii Shijo; NSA/Commentaries, No.28, p.14 - 36, 2023/10
Developments of next generation nuclear reactors, e.g., Fast Reactor, and High Temperature Gas cooled Reactor, are in progress. They can contribute to markets of electricity and industrial heat utilization in the world including Japan. Here, current status of reactor developments in Japan and also situation in the world are summarized, especially for activities of Generation IV International Forum (GIF), developments of Fast Reactor and High Temperature Gas cooled Reactor in Japan, and SMR movements in the world.
Nakano, Masanao; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Okura, Takehisa; Kuramochi, Akihiko; Kawasaki, Masatsugu; Takeuchi, Erina; Fujii, Yutaka*; Jinno, Tsukasa*; et al.
Hoken Butsuri (Internet), 55(2), p.102 - 109, 2020/06
After the Fukushima-Daiichi Nuclear Power Station (1F) Accident in March 2011, the increase was significantly observed in a part of the result of the environmental radiation monitoring in Ibaraki prefecture. "The review meeting of the environmental effect from 1F accident" was established to discuss technically the fluctuation of monitoring data. The review meeting collected the monitoring data from the four nuclear operators, and discussed a fluctuating trend, Cs/Cs activity ratio, and so on. In this report, the results of the dose rate and Cs in fallout, surface soil, flatfish and seabed sediment are introduced. Also the problem solving in the review meeting is introduced.
Kiriyama, Hiromitsu; Mori, Michiaki; Suzuki, Masayuki*; Daito, Izuru*; Okada, Hajime; Ochi, Yoshihiro; Tanaka, Momoko; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; et al.
Reza Kenkyu, 42(6), p.441 - 447, 2014/06
We describe three specific high power laser systems that are being developed in our laboratory for many applications in high field science, nonlinear optics and material processing. We report on a femtosecond petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 20 J of 40 fs pulse duration, a picosecond high intensity Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 mJ of 0.5 ps pulse duration, and a nanosecond high repetition rate Nd:YAG laser system that can provide an average power of 360 W with a pulse duration of 30 ns delivered at a 1 kHz repetition rate. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Ochi, Yoshihiro; Sato, Masatoshi*; Yoshii, Takehiro*; Tamaoki, Yoshinori*; Maeda, Junya*; Matsuoka, Shinichi*; et al.
AIP Conference Proceedings 1465, p.53 - 57, 2012/07
Times Cited Count:0 Percentile:0.13(Physics, Applied)We have reported hundred mJ level, femtosecond pulse duration with the high temporal contrast in an OPCPA/Yb:YAG ceramic thin disk laser system at 10 Hz repetition rate. At an input laser pulse energy of 3.8 mJ from the OPCPA preamplifer the output energy of 130 mJ with spectral bandwidth of 2.5 nm has been obtained from multipass Yb:YAG ceramic thin disk amplifier, and the optical efficiency from LD energy to amplified laser pulse is 9.6%. The recompressed laser pulse duration was measured to be 450 fs. Because the compressor efficiency exceeds 73% the compressed pulse energy can potentially be as high as 95 mJ. The contrast level of this laser pulse was measured to be less than 7.210 at -150 ps. This novel laser system after further amplification using additional amplifiers can be useful for the laser-driven proton acceleration in future.
Kiriyama, Hiromitsu; Suzuki, Masayuki*; Daito, Izuru; Okada, Hajime; Ochi, Yoshihiro; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; Maeda, Junya*; Matsuoka, Shinichi*; et al.
Reza Kenkyu, 40(2), p.143 - 145, 2012/02
We demonstrate a compact, high-spatiotemporal-quality, high-intensity diode-pumped Yb:YAG thin-disk chirped-pulse amplification (CPA) laser system that incorporates a nonlinear preamplifier based on optical parametric chirped-pulse amplification (OPCPA). The stretched pulses are amplified in the OPCPA preamplifier and the following Yb:YAG main amplifier to 100 mJ at 10 Hz. The broadband amplified beam quality of 1.1 (horizontal direction) and 1.4 (vertical direction) times diffraction limited and pulse compression down to 470 fs with contrast of better than 10 have been achieved successfully.
Suzuki, Masayuki*; Kiriyama, Hiromitsu; Daito, Izuru; Ochi, Yoshihiro; Okada, Hajime; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; Maeda, Junya*; Matsuoka, Shinichi*; et al.
Applied Physics B, 105(2), p.181 - 184, 2011/11
Times Cited Count:5 Percentile:28.53(Optics)We have demonstrated an OPCPA/Yb:YAG ceramic thin disk hybrid laser system having hundred mJ level pulse energy sub-picosecond pulse duration with high temporal contrast. At an input energy of 3.8 mJ from an OPCPA preamplifier an output energy of 130 mJ was obtained from Yb:YAG ceramic thin disk amplifier. A recompressed pulse duration of 450 fs with a contrast level of less than 7.210 was obtained. The contrast level is the highest value achieved in Yb:YAG chirped pulse amplification (CPA) laser system with hundred mJ level.
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Nakai, Yoshiki; Orimo, Satoshi; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; Maeda, Junya*; et al.
Applied Physics B, 97(2), p.379 - 382, 2009/10
Times Cited Count:7 Percentile:37.41(Optics)We report the highest energy broadband laser pulses at a center wavelength of 1030 nm based on optical parametric chirped-pulse amplification (OPCPA). We have demonstrated amplification of 1030 nm femtosecond laser pulses from a broadband Yb oscillator to over 6.5 mJ with a total gain of greater than 10 achieved in a single pass through only 56 mm of gain material at a 10 Hz repetition rate. The amplified spectral bandwidth of 10.8 nm affords recompression to a 230 fs pulse duration following amplification. As an alternative to the regenerative amplifier (RA) this system is one of the more promising candidates for realizing compact, high intensity, direct diode pumped, high repetition rate femtosecond Yb:YAG chirped-pulse amplification (CPA) in laser systems.
Ura, Tamaki*; Takamasa, Tomoji*; Nishimura, Hajime*; Aoki, Taro*; Ueno, Michio*; Maeda, Toshio*; Nakamura, Masato*; Shimazu, Shunsuke*; Tokunaga, Sango*; Shibata, Yozo*; et al.
JAERI-Tech 2001-049, 154 Pages, 2001/07
JAERI has studied on design and operation of a nuclear powered submersible research vessel, which will navigate under sea in the Arctic Ocean, as a part of the design study of advanced marine reactors. This report describes operation conditions and an operating system of the vessel those were discussed by the specialists of hull design, sound positioning, ship motions and oceanography, etc. The design conditions on ship motions for submersible vessels were surveyed considering regulations in our country, and ship motions were evaluated assuming the observation activities in the Arctic Ocean. A submarine transponder system and an on ice communication buoy system were examined as a positioning and communication system supposing the activity under ice. Procedures to secure safety of nuclear powered submersible research vessel were discussed based on the investigation of accidents. These results were reflected to the concept of the nuclear powered submersible research vessel, and subjects fto be settled in the next step were clarified.
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Bolton, P.; Sugiyama, Akira; Kondo, Kiminori; Kawanishi, Shunichi*; Sato, Masatoshi*; Tamaoki, Yoshinori*; et al.
no journal, ,
At our Institute we are developing a compact ion accelerator for cancer therapy using a laser-driven plasma point source of ions. The laser system was consisted of an oscillator, Offner stretcher, optical parametric amplifier (OPCPA), LD pumped Yb:YAG amplifier, and compressor. In OPCPA the stretched laser pulse after the pulse stretcher was amplified to 3.8 mJ with only a 12.8 nJ input. After amplification in the OPCPA laser pulse was further amplified by an Yb:YAG thin disk module which was pumped by the Q-CW LD. The maximum output energy was about 80 mJ in a multi-pass scheme (20 pass) at 10 Hz. The compressed pulse duration is about 520 fs, and the contrast level before the main pulse is measured as 10 at -150 ps. We have developed that new high intensity, high contrast femtosecond OPCPA/LD-pumped Yb:YAG hybrid laser system. This novel system might represent the driver in integrated, laser-driven ion accelerator systems.
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Nakai, Yoshiki*; Daido, Hiroyuki; Bolton, P.; Sugiyama, Akira; Kondo, Kiminori; Kawanishi, Shunichi; et al.
no journal, ,
At our Institute we are developing a compact ion accelerator for cancer therapy using a laser-driven plasma point source of ions. The laser system was consisted of an oscillator, offner stretcher, optical parametric amplifier (OPCPA), LD pumped Yb:YAG amplifier, and compressor. In OPCPA the stretched laser pulse after the pulse stretcher was amplified to 5 mJ with only a 0.2 mJ input. After amplification in the OPCPA laser pulse was further amplified by an Yb:YAG (5 at%) thin disk module which was pumped by the Q-CW LD. The maximum output energy was about 120 mJ in a multi-pass scheme (20 pass) at 10 Hz. The compressed pulse duration is about 300 fs, and the contrast level before the main pulse is measured as 10 at -150 ps. We have developed that new high intensity, high contrast femtosecond OPCPA/LD-pumped Yb:YAG hybrid laser system. This novel system might represent the driver in integrated, laser-driven ion accelerator systems.
Suzuki, Masayuki*; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Ochi, Yoshihiro; Sato, Masatoshi*; Yoshii, Takehiro*; Tamaoki, Yoshinori*; Maeda, Junya*; Matsuoka, Shinichi*; et al.
no journal, ,
no abstracts in English
Sato, Katsuhiko*; Maeda, Junya*; Kan, Hirofumi*; Shobu, Takahisa; Muramatsu, Toshiharu
no journal, ,
no abstracts in English
Kiriyama, Hiromitsu; Mori, Michiaki; Shimomura, Takuya; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Daito, Izuru; Suzuki, Masayuki*; Okada, Hajime; Ochi, Yoshihiro; et al.
no journal, ,
We describe two specific high intensity laser systems that are being developed in our laboratory for many applications such as high field science, nonlinear optics. We report on an ultra-high intensity petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 18 J with 30 fs pulse duration for studying extremely high intensity laser matter interaction process and a small-scaled Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 m J of 500 fs pulse duration for compact, high efficiency, high repetition system. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Nakai, Yoshiki; Orimo, Satoshi; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; Maeda, Junya*; et al.
no journal, ,
We have reported the demonstration of an optical parametric chirped-pulse amplification (OPCPA) operating at 1030 nm. A total OPCPA output energy of 6.5 mJ (uncompressed) with gain exceeding of 10 has been achieved with a spectral bandwidth of 10.8 nm and a recompressed pulse duration of 230 fs. This novel system is a promising alternative to the RA as a nonlinear preamplifier for compact, high intensity, Yb:YAG CPA laser using DPPSL systems.
Suzuki, Masayuki*; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Ochi, Yoshihiro; Sato, Masatoshi*; Yoshii, Takehiro*; Tamaoki, Yoshinori*; Maeda, Junya*; Matsuoka, Shinichi*; et al.
no journal, ,
no abstracts in English
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Sato, Masatoshi*; Yoshii, Takehiro*; Tamaoki, Yoshinori*; Maeda, Junya*; Matsuoka, Shinichi*; Kan, Hirofumi*; et al.
no journal, ,
We have demonstrated amplification of 1030 nm broadband chirped-pulses from an ytterbium (Yb) femtosecond oscillator to over 6.5 mJ with a total gain of greater than 10 achieved by a single pass through only 56 mm of gain material at a 10 Hz repetition rate. The amplified broad bandwidth of 10.8 nm affords recompression to a 230 fs pulse duration following amplification. This novel system is a promising alternative to the RA as a nonlinear preamplifier for compact, high intensity, Yb:YAG CPA laser using DPPSL systems.
Takada, Chie; Nakano, Masanao; Munakata, Masahiro; Yoshida, Tadayoshi; Yokosuka, Yoshiyuki; Yamada, Junya; Maeda, Eita; Watanabe, Yuki; Tomioka, Akifumi; Momose, Takumaro
no journal, ,
no abstracts in English
Igarashi, Yu; Hamaguchi, Takumi; Maeda, Eita; Yamada, Junya; Muto, Yasunobu; Tanigaki, Minoru*; Nohara, Naofumi
no journal, ,
At the JAEA Oarai Research Establishment, a portable KURAMA equipped with a data transmission function through an autonomous network using the ZETA standard was permanently installed near the MP for the purpose of redundancy in the measurement of monitoring points, and a system for observing radiation doses near the site boundary was developed. In this presentation, we report on the fixed point observation data for about one year using this system.
Inoue, Yuki; Yamada, Junya; Maeda, Eita; Hatakeyama, Takumi; Miyauchi, Hideaki; Hashimoto, Makoto
no journal, ,
no abstracts in English
Muramatsu, Toshiharu; Shobu, Takahisa; Sato, Katsuhiko*; Maeda, Junya*; Kan, Hirofumi*
no journal, ,
no abstracts in English