Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron capture cross-section measurement and resolved resonance analysis of $$^{237}$$Np

Rovira, G.*; Katabuchi, Tatsuya*; Tosaka, Kenichi*; Matsuura, Shota*; Terada, Kazushi*; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki; Segawa, Mariko; et al.

Journal of Nuclear Science and Technology, 57(1), p.24 - 39, 2020/01

Journal Articles

Measurements of electron-induced neutrons as a tool for determination of electron temperature of fast electrons in the task of optimization laser-produced plasma ions acceleration

Sakaki, Hironao; Nishiuchi, Mamiko; Maeda, Shota; Sagisaka, Akito; Pirozhkov, A. S.; Pikuz, T.; Faenov, A.*; Ogura, Koichi; Fukami, Tomoyo; Matsukawa, Kenya*; et al.

Review of Scientific Instruments, 85(2), p.02A705_1 - 02A705_4, 2014/02

 Times Cited Count:2 Percentile:84.96(Instruments & Instrumentation)

High intensity laser-plasma interaction has attracted considerable interest for a number of years. The laser-plasma interaction is accompanied by generation of various charged particle beams. Results of simultaneous novel measurements of electron-induced photonuclear neutrons (photoneutron), which are a diagnostic of the laser-plasma interaction, are proposed to use for optimization of the laser-plasma ion generation. The proposed method is demonstrated by the laser irradiation with the intensity os 1$$times$$10$$^{21}$$ W/cm$$^{2}$$ on the metal foil target. The photoneutrons are measured by using NE213 liquid scintillation detectors. Heavy-ion signal is registered with the CR39 track detector simultaneously. The measured signals of the electron-induced photoneutrons are well reproduced by using the Particle and Heavy Ion Transport code System (PHITS). The results obtained provide useful approach for analyzing the various laser based ion beams.

Oral presentation

Laser-driven proton generation from a thin-foil target with a high-intensity laser

Sagisaka, Akito; Nishiuchi, Mamiko; Pirozhkov, A. S.; Ogura, Koichi; Sakaki, Hironao; Maeda, Shota; Pikuz, T.; Faenov, A. Ya.*; Fukuda, Yuji; Yogo, Akifumi; et al.

no journal, , 

High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical and other applications. We have performed several high intensity laser-matter interaction experiments using a thin-foil target irradiated by Ti:sapphire laser (J-KAREN) at JAEA. The pulse duration was typically $$sim$$ 40 fs (FWHM). The electron density profiles of the preformed plasma were observed with the interferometer. The high temporal contrast laser system could reduce the preformed plasma. The maximum proton energy gradually increased as the laser performance improved and finally protons of $$sim$$ 40 MeV energy were observed at the peak laser intensity of $$sim$$ 1 $$times$$ 10$$^{21}$$ W/cm$$^{2}$$.

Oral presentation

Laser driven ion acceleration experiment by high contrast high intensity laser J-KAREN system

Nishiuchi, Mamiko; Sakaki, Hironao; Sagisaka, Akito; Maeda, Shota; Pirozhkov, A. S.; Pikuz, T.; Faenov, A. Ya.*; Ogura, Koichi; Fukuda, Yuji; Matsukawa, Kenya*; et al.

no journal, , 

no abstracts in English

Oral presentation

Measurement of electron spectrum generated by irradiating thin-Foil target with Ultra-intense Ultra-short pulse laser

Maeda, Shota; Nishiuchi, Mamiko; Sakaki, Hironao; Sagisaka, Akito; Pirozhkov, A. S.; Pikuz, T.; Faenov, A. Ya.*; Ogura, Koichi; Fukuda, Yuji; Matsukawa, Kenya*; et al.

no journal, , 

In JAEA, the high energy ions generated by the interaction between Ultra-intense Ultra-Short pulse laser and thin-foil target is being studied. Irradiating condition must be optimized to generate higher energy ions while suppress the becoming gigantic of laser. It is necessary to know the physical phenomenon in plasma to determine the parameter to optimize from the information on the electron and neutron, X-rays, which are generated simultaneously with ion. In this study, in order to measure electron temperature accurately, an electron spectrometer was developed which have broad range (1-200 MeV). The detector is comprised of permanent magnets and a fluorescent plate, CCD camera. In the presentation, the result of the calibration experiment carried out using 4, 9, 12, 15 MeV quasi-monoenergetic electron beam in HIBMC will be reported. Moreover, response analysis method was inspected using PHITS which is particle transporting Monte Carlo simulation code, and will also report the result.

Oral presentation

Evaluation of neutron from the laser-driven acceleration

Sakaki, Hironao; Nishiuchi, Mamiko; Maeda, Shota; Sagisaka, Akito; Pirozhkov, A. S.; Pikuz, T.; Faenov, A. Y.*; Ogura, Koichi; Fukuda, Yuji; Matsukawa, Kenya*; et al.

no journal, , 

We report that the results of simultaneous novel measurements of electron-induced photonuclear neutrons (photoneutron), which are a diagnostic of the laser-plasma interaction. The proposed method is demonstrated by the laser irradiation with the intensity of 1$$times$$10$$^{21}$$ W/cm$$^{2}$$ on the metal foil target. The photoneutrons are measured by using NE213 liquid scintillation detectors. The measured signals of the electron-induced photoneutrons are well reproduced by using the Particle and Heavy Ion Transport code System (PHITS).

Oral presentation

Radiation properties of plasma irradiated by ultra-short laser pulses with intensities of 10$$^{21}$$ W/cm$$^{2}$$

Faenov, A.*; Hansen, S.*; Colgan, J.*; Abdallah, J.*; Pikuz, T.; Pikuz, S.*; Skobelev, I.*; Nishiuchi, Mamiko; Sakaki, Hironao; Maeda, Shota; et al.

no journal, , 

Oral presentation

Measurements of neutron in experiment of laser induced proton sources

Ogura, Koichi; Sakaki, Hironao; Nishiuchi, Mamiko; Sagisaka, Akito; Fukuda, Yuji; Pirozhkov, A. S.; Faenov, A.*; Pikuz, T.; Kanasaki, Masato; Maeda, Shota; et al.

no journal, , 

no abstracts in English

Oral presentation

The Possibility of laser-driven heavy ion source

Nishiuchi, Mamiko; Sakaki, Hironao; Nishio, Katsuhisa; Sako, Hiroyuki; Pikuz, T.; Faenov, A. Ya.*; Esirkepov, T. Z.; Pirozhkov, A. S.; Matsukawa, Kenya*; Maeda, Shota; et al.

no journal, , 

The up-grade plan for the heavy ion accelerator facilities in the world is now going on. The important issues to be solved is how to make high-current, high Q/M and high energy heavy ion beam. To make smaller size heavy ion accelerator is important in order to minimize the construction and running costs. The key issue is, "whether or not we can obtain high Q/M ion beam at the very beginning of the accelerator stages". However, the existing conventional ion-source technology can supply the beam of Q/M $$<$$ 0.2. On the other hand, our research at is to accelerate the ions by the laser-based method by using high contrast high intensity short pulse laser system, J-KAREN. Thanks to the extra-ordinary high quasi-static electric field of $$sim$$100 TV/m set in our method, the ions are efficiently stripped and accelerated toward high energy. By optimizing the condition, it is very probable that not only the laser-based ion source but also the laser-based ion injector would be realized. We show the experimental results of high-energy heavy ion acceleration by the interaction between high intensity short-pulse laser pulse interaction with the thin-foil target.

Oral presentation

Laser-driven proton acceleration with a thin-foil target

Sagisaka, Akito; Nishiuchi, Mamiko; Pirozhkov, A. S.; Ogura, Koichi; Sakaki, Hironao; Maeda, Shota; Pikuz, T.; Faenov, A. Y.*; Fukuda, Yuji; Kanasaki, Masato; et al.

no journal, , 

High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical and other applications. We have performed several high intensity laser-matter interaction experiments using a thin-foil target irradiated by Ti:sapphire laser (J-KAREN) at JAEA. The pulse duration was typically $$sim$$40 fs (FWHM). The high-order harmonics (2nd$$sim$$4th) were observed with the spectrometer in the reflected direction. The maximum proton energy of $$sim$$40 MeV energy were observed at the peak laser intensity of $$sim$$1$$times$$10$$^{21}$$W/cm$$^{2}$$.

Oral presentation

Measurements of the electron temperature from the laser-driven acceleration

Sakaki, Hironao; Nishiuchi, Mamiko; Maeda, Shota; Ishida, Akihiro*; Yamashita, Tomohiro*; Katahira, Kei*; Pikuz, T.; Faenov, A.*; Esirkepov, T. Z.; Pirozhkov, A. S.; et al.

no journal, , 

We will tell about the measurement methods of the electron temperature from the laser-driven acceleration.

Oral presentation

Neutron measurement in experiment of laser induced proton source

Ogura, Koichi; Sakaki, Hironao; Nishiuchi, Mamiko; Sagisaka, Akito; Fukuda, Yuji; Pirozhkov, A. S.; Faenov, A.*; Pikuz, T.; Kanasaki, Masato; Maeda, Shota; et al.

no journal, , 

We try to measure the neutrons produced in an experiment of laser induced proton source. The neutron spectral distribution in target normal direction was measured using neutron time-of-flight detector (30 mm diameter, 50 mm thick plastic scintillator coupled to fast Photomultiplier Tube). The distance between the scintillator and CR39 stack was about 5 m. The TOF detector was shielded against the X-ray by up to 250 mm of lead. TOF detector signal was recorded by a fast digital oscilloscope. An example of TOF detector signal is shown. The simulation of this experiment is now going with a Monte Carlo particle transport code. The comparison between experimental and simulation results will be discussed. Based on those, the future prospect will be discussed.

Oral presentation

High resolution X-ray spectroscopy of plasma irradiated by ultra-short laser pulses with intensities of 10$$^{21}$$ W/cm$$^{2}$$

Faenov, A.*; Hansen, S. B.*; Colgan, J.*; Abdallah, J.*; Pikuz, T.; Pikuz, S. A.*; Skobelev, I. Y.*; Nishiuchi, Mamiko; Sakaki, Hironao; Maeda, Shota; et al.

no journal, , 

Oral presentation

Proton generation from a thin-foil target with a high-intensity laser

Sagisaka, Akito; Nishiuchi, Mamiko; Pirozhkov, A. S.; Ogura, Koichi; Sakaki, Hironao; Maeda, Shota*; Pikuz, T.; Faenov, A. Ya.*; Fukuda, Yuji; Kanasaki, Masato*; et al.

no journal, , 

High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical and other applications. We have performed several high intensity laser-matter interaction experiments using a thin-foil target irradiated by Ti:sapphire laser (J-KAREN) at JAEA. The pulse duration was typically $$sim$$40 fs (FWHM). The high-order harmonics (2nd $$sim$$ 4th) were observed with the spectrometer in the reflected direction. The maximum proton energy of $$sim$$40 MeV energy were observed at the peak laser intensity of $$sim$$1$$times$$10$$^{21}$$ W/cm$$^{2}$$.

14 (Records 1-14 displayed on this page)
  • 1