Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 370

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Conceptual study of Post Irradiation Examination (PIE) Facility at J-PARC

Saito, Shigeru; Meigo, Shinichiro; Makimura, Shunsuke*; Hirano, Yukinori*; Tsutsumi, Kazuyoshi*; Maekawa, Fujio

JAEA-Technology 2023-025, 48 Pages, 2024/03

JAEA-Technology-2023-025.pdf:3.11MB

JAEA has been developing Accelerator-Driven Systems (ADS) for research and development of nuclear transmutation using accelerators in order to reduce the volume and hazardousness of high-level radioactive waste generated by nuclear power plants. In order to prepare the material irradiation database necessary for the design of ADS and to study the irradiation effects in Lead-Bismuth Eutectic (LBE) alloys, a proton irradiation facility is under consideration at J-PARC. In this proton irradiation facility, 250 kW proton beams will be injected into the LBE spallation target, and irradiation tests under LBE flow will be performed for candidate structural materials for ADS. Furthermore, semiconductor soft-error tests, medical RI production, and proton beam applications will be performed. Among these, Post Irradiation Examination (PIE) of irradiated samples and RI separation and purification will be carried out in the PIE facility to be constructed near the proton irradiation facility. In this PIE facility, PIE of the equipment and samples irradiated in other facilities in J-PARC will also be performed. This report describes the conceptual study of the PIE facility, including the items to be tested, the test flow, the facilities, the test equipment, etc., and the proposed layout of the facility.

Journal Articles

Fabrication progress of the prototype spoke cavity for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Domae, Takeshi*

Journal of Physics; Conference Series, 2687(5), p.052008_1 - 052008_6, 2024/01

 Times Cited Count:0

Journal Articles

Design of the Low energy beam transport line for the JAEA-ADS linac

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.545 - 549, 2023/11

The Japan Atomic Energy Agency (JAEA) is proposing a 30-MW proton linear accelerator (linac) for the application of accelerator-driven subcritical system (ADS) technology to achieve nuclear waste transmutation. A major challenge for the JAEA-ADS linac is the efficient transport of a 35 keV proton beam from the ion source to the radio-frequency quadrupole. In order to achieve this goal, we have optimized a magnetostatic low energy beam transport (LEBT) consisting of two solenoids to reduce the transmission of high-charge ions generated by the source and minimize the growth of proton emittance, while taking into account various space-charge compensation scenarios. In this report, we present the optical design and discuss the multiparticle tracking results of the JAEA-ADS LEBT.

Journal Articles

Measurement of double-differential neutron yields for iron, lead, and bismuth induced by 107-MeV protons for research and development of accelerator-driven systems

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta*; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

EPJ Web of Conferences, 284, p.01023_1 - 01023_4, 2023/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron, lead, and bismuth have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics. The measured TTNYs and DDXs were compared with calculations by the Monte Carlo transport code PHITS with its default physics model of INCL version 4.6 combined with GEM and those with the JENDL-4.0/HE nuclear data library.

Journal Articles

Nuclide production cross sections in proton-induced reactions on Bi at GeV energies

Iwamoto, Hiroki; Nakano, Keita*; Meigo, Shinichiro; Takeshita, Hayato; Maekawa, Fujio

EPJ Web of Conferences, 284, p.01033_1 - 01033_4, 2023/05

 Times Cited Count:1 Percentile:77.10(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Design and optimization of a proton source extraction system for the JAEA-ADS linac

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 14th International Particle Accelerator Conference (IPAC 23) (Internet), p.1591 - 1593, 2023/05

The Japan Atomic Energy Agency (JAEA) is designing a 30 MW continuous wave (cw) superconducting proton linear accelerator (linac) for the Accelerator Driven System (ADS) proposal. The JAEA-ADS linacs ion source must provide a proton beam over 20 mA with an energy of 35 keV and a normalized rms emittance of less than 0.1 $$pi$$ mm mrad. As the extraction system determines the beam properties and quality, systematic optimizations on the geometry and input values of the extraction system design were conducted using the AXCEL-INP 2-D simulation program to satisfy the goal requirements. This work describes the extraction system design and reports the beam dynamics results of the first study for the proton source of the JAEA-ADS linac.

Journal Articles

Measurement of 107-MeV proton-induced double-differential thick target neutron yields for Fe, Pb, and Bi using a fixed-field alternating gradient accelerator at Kyoto University

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

Journal of Nuclear Science and Technology, 60(4), p.435 - 449, 2023/04

 Times Cited Count:3 Percentile:52.93(Nuclear Science & Technology)

Double-differential thick target neutron yields (TTNYs) for Fe, Pb, and Bi targets induced by 107-MeV protons were measured using the fixed-field alternating gradient accelerator at Kyoto University for research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research at the Kyoto University Critical Assembly (KUCA). Note that TTNYs were obtained with the time-of-flight method using a neutron detector system comprising eight neutron detectors; each detector has a small NE213 liquid organic scintillator and photomultiplier tube. The TTNYs obtained were compared with calculation results using Monte Carlo-based spallation models (i.e., INCL4.6/GEM, Bertini/GEM, JQMD/GEM, and JQMD/SMM/GEM) and the evaluated high-energy nuclear data library, i.e., JENDL-4.0/HE, implemented in the particle and heavy iontransport code system (PHITS). All models, including JENDL-4.0/HE, failed to predict high-energy peaks at a detector angle of 5$$^{circ}$$. Comparing the energy- and angle-integrated spallation neutron yields at energies of $$le$$20 MeV estimated using the measured TTNYs and the PHITS indicated that INCL4.6/GEM would be suitable for the Monte Carlo transport simulation of ADS reactor physics experiments at the KUCA.

Journal Articles

Development and validation of analysis code for spallation products behavior in LBE coolant system of ADS comparing with the distribution data in MEGAPIE spallation target

Miyahara, Shinya*; Arita, Yuji*; Nakano, Keita; Maekawa, Fujio; Sasa, Toshinobu; Obayashi, Hironari; Takei, Hayanori

Nuclear Engineering and Design, 403, p.112147_1 - 112147_17, 2023/03

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

It is important to evaluate the inventories and the release and transport behavior of the spallation products (SPs) in the Lead-Bismuth Eutectic (LBE) coolant system of Accelerator Driven System (ADS) for the safety studies of the radiological hazard both in the cases of normal operation and accident. University of Fukui and JAEA have been developing the computer analysis code TRAIL (Transport of RAdionuclides In Liquid metal systems) which predicts the time dependent behavior of SPs within the LBE coolant system of ADS for the wide range of operational events. The source term of both radioactive and stable SPs in the LBE coolant is given as input and the radioactive decay chain model for the radioactive SPs is implemented in the code to evaluate the effect of precursors on the SPs mobility. This paper presents the recent advancement status of the code development and the validation results comparing with the distribution data of volatile SPs in MEGAPIE spallation target.

Journal Articles

Toward nuclear transmutation

Maekawa, Fujio

Ryoshi Bimu Kagaku No Kiso To Oyo; NSA/Commentaries, No.27, p.15 - 25, 2023/03

The nuclear transmutation technology that is one of the most beneficial industrial applications of quantum beams to humankind is explained.

Journal Articles

Availability analysis for the 30-MW proton linac of the JAEA-ADS project

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.286 - 290, 2023/01

Japan Atomic Energy Agency (JAEA) is designing a 30-MW proton linear accelerator (linac) as one of the fundamental components for its accelerator-driven subcritical system (ADS) project. ADS accelerators demand extremely high reliability and availability to avoid thermal stress in the subcritical reactor structures. Thus, reliability and availability assessments of the accelerator are mandatory to detect weakness in the lattice designed and evaluate redundancy configurations to fulfill the demanded operation. This study applied the Reliability Block Diagrams (RBD) method to calculate the Medium Time Between Failures (MTBF) for different linac configurations: all the linac's elements in a series configuration and a combination of hot-standby for the low-energy section of the linac and k-out-n redundancy for the high-energy part. The estimation considered the detailed arrangement of the cavities and magnets that compose the linac lattice. In this report, we describe the reliability model of the JAEA-ADS linac, report the MTBF results, and point out the potential route toward operating with the required availability.

Journal Articles

Robust and compact design of a 30-MW beam transport line for an accelerator-driven subcritical system

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.179 - 183, 2023/01

The Japan Atomic Energy Agency accelerator-driven subcritical system (JAEA-ADS) pursues the reduction of nuclear waste by transmuting minor actinides. JAEA-ADS project drives a 30-MW proton beam to a lead-bismuth eutectic (LBE) spallation target to produce neutrons for a subcritical core reactor. To this end, the JAEA-ADS beam transport (BT) must provide a suitable beam profile and stable beam power to the beam window of the spallation target to avoid high-thermal stress in the components, such as the beam window. The beam transport was optimized by tracking a large number of macroparticles to mitigate the beam loss, performance with high stability in the presence of errors, and fulfill the length requirement on the transport. This work presents beam transport design and beam dynamics research for the JAEA-ADS project.

Journal Articles

Design and beam dynamics studies of an ADS RFQ based on an equipartitioned beam scheme

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro; Jameson, R. A.*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.499 - 502, 2023/01

The Japan Atomic Energy Agency (JAEA) is designing a 30-MW proton linear accelerator (linac) for the accelerator-driven subcritical system (ADS). The Radio Frequency Quadrupole (RFQ) is an essential component for the performance of high-intensity linac, especially in ADS, where stringent reliability is demanded. The present RFQ will capture a 20 mA proton beam and accelerate from the energy of 35 keV to 2.5 MeV, where the space-charge effects are severe. The present RFQ's design employs the equipartitioning (EP) beam scheme to control the emittance growth and compactness. As a result, the beam halo formation was minimized and allowed to optimize the superconducting linac downstream part. A remarkable feature of this RFQ is the low Kilpatrick factor of 1.2 adopted to achieve high stability by reducing the probability of surface sparking on the vane. This work presents and discusses the results of this RFQ design.

Journal Articles

A Plan of Proton Irradiation Facility at J-PARC and possibilities of application to nuclear data research

Maekawa, Fujio

JAEA-Conf 2022-001, p.7 - 13, 2022/11

The partitioning and transmutation (P-T) technology has promising potential for volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. JAEA is developing the P-T technology combined with accelerator driven systems (ADS). One of critical issues affecting the feasibility of ADS is the proton beam window (PBW) which functions as a boundary between the accelerator and the sub-critical reactor core. The PBW is damaged by a high-intensity proton beam and spallation neutrons produced in the target, and also by flowing high-temperature liquid lead bismuth eutectic alloy which is corrosive to steel materials. To study the materials damage under the ADS environment, J-PARC is proposing a plan of proton irradiation facility which equips with a liquid lead-bismuth spallation target bombarded by a 400 MeV - 250 kW proton beam. The facility is also open for versatile purposes such as soft error testing of semi-conductor devises, RI production, materials irradiation for fission and fusion reactors, and so on. Application to nuclear data research with using the proton beam and spallation neutrons is also one of such versatile purposes, and we welcome unique ideas from the nuclear data community.

Journal Articles

Measurement of 107-MeV proton-induced double-differential neutron yields for iron for research and development of accelerator-driven systems

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; Yashima, Hiroshi*; Nishio, Katsuhisa; et al.

JAEA-Conf 2022-001, p.129 - 133, 2022/11

For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors composed of the NE213 liquid organic scintillators and photomultiplier tubes, which were connected to a multi-channel digitizer mounted with a field-programmable gate array (FPGA), for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination applying the gate integration method to the FPGA. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics.

Journal Articles

Beam physics design of a 30-MW beam transport to the target for an accelerator-driven subcritical system

Yee-Rendon, B.; Meigo, Shinichiro; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Iwamoto, Hiroki; Sugawara, Takanori; Nishihara, Kenji

Journal of Instrumentation (Internet), 17(10), p.P10005_1 - P10005_21, 2022/10

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

To reduce the hazard of minor actinides in nuclear waste, JAEA proposed an accelerator-driven subcritical system (JAEA-ADS). The JAEA-ADS drives a subcritical reactor 800-MWth by 30-MW proton linac delivering the beam to the spallation neutron target inside the reactor. The beam transport to the target (BTT) is required for high-beam power stability and low peak density to ensure the integrity of the beam window. Additionally, the design should have compatible with the reactor design for the maintenance and replacement of the fuel and the beam window. A robust-compact BTT design was developed through massive multiparticle simulations. The beam optics was optimized to guarantee beam window feasibility requirements by providing a low peak density of less than 0.3 $$mu$$A/mm$$^2$$. Beam stability was evaluated and improved by simultaneously applying the linac's input beam and element errors. The input beam errors to the reactor were based on the beam degradation obtained by implementing fast fault compensation in the linac. Those results show that the BTT fulfills the requirements for JAEA-ADS.

Journal Articles

Measurement of nuclide production cross sections for proton-induced reactions on $$^{rm nat}$$Ni and $$^{rm nat}$$Zr at 0.4, 1.3, 2.2, and 3.0 GeV

Takeshita, Hayato*; Meigo, Shinichiro; Matsuda, Hiroki*; Iwamoto, Hiroki; Nakano, Keita; Watanabe, Yukinobu*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 527, p.17 - 27, 2022/09

 Times Cited Count:3 Percentile:52.93(Instruments & Instrumentation)

To improve accuracy of nuclear design of accelerator driven nuclear transmutation systems and so on, nuclide production cross sections on Ni and Zr were measured for GeV energy protons. The measured results were compared with PHITS calculations, JENDL/HE-2007 and so on.

Journal Articles

Current status of the spoke cavity prototyping for the JAEA-ADS linac

Tamura, Jun; Kondo, Yasuhiro; Yee-Rendon, B.; Meigo, Shinichiro; Maekawa, Fujio; Kako, Eiji*; Umemori, Kensei*; Sakai, Hiroshi*; Domae, Takeshi*

Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.180 - 183, 2022/09

The Japan Atomic Energy Agency (JAEA) has proposed an accelerator-driven subcritical system (ADS) to efficiently reduce high-level radioactive waste generated at nuclear power plants. One of the challenging R&D aspects of ADS is the reliability of the accelerator. In preparation for the full-scale design of the CW proton linac for the JAEA-ADS, we are now prototyping a low-beta (around 0.2) single spoke cavity. Since there is no experience in Japan in manufacturing a superconducting spoke cavity, prototyping and performance testing of the cavity is essential to ensure the feasibility of the JAEA-ADS linac. In the Japanese fiscal year 2021, we have started welding cavity parts together. By preliminarily examining the electron beam welding conditions, each press-formed niobium part was joined with a smooth welding bead. At present, we have fabricated the cavity's body part.

Journal Articles

Beam dynamics studies for fast beam trip recovery of the Japan Atomic Energy Agency accelerator-driven subcritical system

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro

Physical Review Accelerators and Beams (Internet), 25(8), p.080101_1 - 080101_17, 2022/08

 Times Cited Count:3 Percentile:39.49(Physics, Nuclear)

High reliability and availability are primary goals for the operation of particle accelerators, especially for accelerator-driven subcritical systems (ADS). ADSs employ high-power beams for the transmutation of minor actinide; as a result, the amount and the radiotoxicity of the nuclear waste are considerably reduced. To this end, the Japan Atomic Energy Agency is designing a 30-MW continuous wave (cw) super-conducting proton linear accelerator (linac) that supplies neutrons to an 800-MW subcritical reactor by a spallation process. The major challenge for an ADS linac is the strict control of the beam trip duration and its frequency to avoid thermal stress in the subcritical reactor structures. The maximum allowed beam trips for failures longer than a few seconds are estimated to be far below the rate achieved in current accelerators. Thus, we implemented a combination of hot standby and local compensation that enables a fast beam recovery. This work comprehensively investigated the tolerance of our linac lattice for the local compensations for failures in superconducting cavities and magnets. This scheme includes simultaneous compensation of multiple cavities in independent and same cryomodules that significantly enhance the reliability of the linac. The returned schemes present acceptable beam performance to guarantee the integrity of the linac and the beam transport to the target; moreover, they satisfy the beam stability in the beam window. In addition, the readjusted elements are subjected to moderate stress to ensure a sustainable operation. This manuscript reports the beam dynamics results toward fulfilling the high reliability demanded by an ADS linac.

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 2; Transmutation Experimental Facility at J-PARC

Maekawa, Fujio; Takei, Hayanori

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.206 - 210, 2022/05

In developing an accelerator-driven nuclear transmutation system (ADS), it is necessary to solve technical issues related to proton beams, such as the development of materials that can withstand high-intensity proton beams and the characterization of subcritical cores driven by proton beams. Therefore, at the high-intensity proton accelerator facility J-PARC, a transmutation experimental facility that actually conducts various tests using a high-intensity proton beam is being planned. This paper introduces the outline and future direction of the transmutation experimental facility.

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 1; Accelerator Driven Nuclear Transmutation System (ADS)

Maekawa, Fujio

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.201 - 205, 2022/05

The nuclear transmutation technology is a powerful solution to the "nuclear waste" problem that accompanies nuclear power generation. The Accelerator Driven System (ADS), which combines a high-intensity accelerator and a subcritical core, is a promising tool for nuclear transmutation. In this paper, we will explain the significance and principle of nuclear transmutation by ADS, design examples of ADS, partitioning and transmutation technology and its effects, required performance of high-intensity accelerators, overseas trends, etc.

370 (Records 1-20 displayed on this page)