Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Callen, J. D.*; Anderson, J. K.*; Arlen, T. C.*; Bateman, G.*; Budny, R. V.*; Fujita, Takaaki; Greenfield, C. M.*; Greenwald, M.*; Groebner, R. J.*; Hill, D. N.*; et al.
Nuclear Fusion, 47(11), p.1449 - 1457, 2007/11
Times Cited Count:7 Percentile:25.29(Physics, Fluids & Plasmas)no abstracts in English
Loarte, A.*; Lipschultz, B.*; Kukushkin, A. S.*; Matthews, G. F.*; Stangeby, P. C.*; Asakura, Nobuyuki; Counsell, G. F.*; Federici, G.*; Kallenbach, A.*; Krieger, K.*; et al.
Nuclear Fusion, 47(6), p.S203 - S263, 2007/06
Times Cited Count:899 Percentile:96.49(Physics, Fluids & Plasmas)Progress, since the ITER Physics Basis publication (1999), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Significant progress in experiment area: energy and particle transport, the interaction of plasmas with the main chamber material elements, ELM energy deposition on material elements and the transport mechanism, the physics of plasma detachment and neutral dynamics, the erosion of low and high Z materials, their transport to the core plasma and their migration at the plasma edge, retention of tritium in fusion devices and removal methods. This progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma-materials interaction. The implications for the expected performance in ITER and the lifetime of the plasma facing materials are discussed.
Kallenbach, A.*; Asakura, Nobuyuki; Kirk, A.*; Korotkov, A.*; Mahdavi, M. A.*; Mossessian, D.*; Porter, G. D.*
Journal of Nuclear Materials, 337-339, p.381 - 385, 2005/03
Times Cited Count:67 Percentile:96.47(Materials Science, Multidisciplinary)Edge profile data for H-mode discharges in 6 tokamaks have been analysed with the main focus on the edge density profile as well as electron temperature and density gradient lengths and steep gradient zone widths. A uniform procedure of data treatment and assignment of the separatrix position via power balance allowed to put the multi-machine data on an even base. The machine size appears to be the leading parameter for the width of the steep edge transport barrier gradient zone, as well as for the temperature decay length at the separatrix. Effects associated with neutral penetration physics are visible in the edge density profile.
Takenaga, Hidenobu; Sakasai, Akira; Kubo, Hirotaka; Asakura, Nobuyuki; Schaffer, M. J.*; Petrie, T. W.*; Mahdavi, M. A.*; Baker, D. R.*; Allen, S. L.*; Porter, G. D.*; et al.
Nuclear Fusion, 41(12), p.1777 - 1787, 2001/12
Times Cited Count:23 Percentile:58.04(Physics, Fluids & Plasmas)no abstracts in English
Takenaga, Hidenobu; Mahdavi, M. A.*; Baker, D. R.*
Physics of Plasmas, 8(5), p.1607 - 1611, 2001/05
Times Cited Count:2 Percentile:7.03(Physics, Fluids & Plasmas)no abstracts in English
Jackson, G. L.*; Taylor, T. S.*; Allen, S. L.*; Ferron, J.*; Haas, G.*; Hill, D.*; Mahdavi, M. A.*; Nakamura, Hiroo; Osborne, T. H.*; Petersen, P. I.*; et al.
Journal of Nuclear Materials, 162-164, p.489 - 495, 1989/04
Times Cited Count:27 Percentile:91.43(Materials Science, Multidisciplinary)no abstracts in English