Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Summary of the ARIES Town Meeting; Edge plasma physics and plasma material interactions in the fusion power plant regime

Tillack, M. S.*; Turnbull, A. D.*; Kessel, C. E.*; Asakura, Nobuyuki; Garofalo, A. M.*; Holland, C.*; Koch, F.*; Linsmeier, Ch.*; Lisgo, S.*; Maingi, R.*; et al.

Nuclear Fusion, 53(2), p.027003_1 - 027003_23, 2013/02

 Times Cited Count:5 Percentile:21.97(Physics, Fluids & Plasmas)

This review summarizes the presentations and discussions by experts in the fields of edge plasma physics and plasma material interactions at a workshop organized for the purpose of evaluating current status and extrapolating forward to the post-ITER power plant regime. The topics included physics, modelling, experimental results, benchmarking and programme planning.

Journal Articles

Pedestal stability comparison and ITER pedestal prediction

Snyder, P. B.*; Aiba, Nobuyuki; Beurskens, M.*; Groebner, R. J.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kirk, A.*; et al.

Nuclear Fusion, 49(8), p.085035_1 - 085035_8, 2009/08

 Times Cited Count:170 Percentile:98.64(Physics, Fluids & Plasmas)

The pressure at the top of the edge transport barrier impacts fusion performance, while large ELMs can constrain material lifetimes. Investigation of intermediate wavelength MHD mode has led to improved understanding of the pedestal height and the mechanism for ELMs. The combination of high resolution diagnostics and a suite of stability codes has made edge stability analysis routine, and contribute both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

Journal Articles

Pedestal stability comparison and ITER pedestal prediction

Snyder, P. B.*; Aiba, Nobuyuki; Beurskens, M.*; Groebner, R. J.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Huysmans, G. T. A.*; Kamada, Yutaka; Kirk, A.*; et al.

Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10

Investigation of intermediate wavelength MHD modes has led to improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high resolution pedestal diagnostics and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard ELM regime, and for small ELM and ELM-free regimes. We further use the stability constraint on pedestal height to test models of the pedestal width, and self-consistently combine a simple width model with MHD stability calculations to develop a new predictive model (EPED1) for the pedestal height and width. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.

Journal Articles

Edge localized modes; Recent experimental findings and related issues

Kamiya, Kensaku; Asakura, Nobuyuki; Boedo, J. A.*; Eich, T.*; Federici, G.*; Fenstermacher, M.*; Finken, K.*; Herrmann, A.*; Terry, J.*; Kirk, A.*; et al.

Plasma Physics and Controlled Fusion, 49(7), p.s43 - s62, 2007/07

 Times Cited Count:75 Percentile:91.75(Physics, Fluids & Plasmas)

Edge Localized Mode (ELM) measurements in the tokamaks, including JT-60U, DIII-D, ASDEX-U and JET, are reviewed. The followings are outlines of this presentation. (1) ELM Types and basic scaling, (2) Small ELM regimes and ELM mitigation, (3) ELM filament formation and transverse motion, (4) Power deposition on divertor targets and main chamber wall.

Journal Articles

Edge pedestal physics and its implications for ITER

Kamada, Yutaka; Leonard, A. W.*; Bateman, G.*; Becoulet, M.*; Chang, C. S.*; Eich, T.*; Evans, T. E.*; Groebner, R. J.*; Guzdar, P. N.*; Horton, L. D.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

no abstracts in English

Journal Articles

Pedestal conditions for small ELM regimes in tokamaks

Oyama, Naoyuki; Gohil, P.*; Horton, L. D.*; Hubbard, A. E.*; Hughes, J. W.*; Kamada, Yutaka; Kamiya, Kensaku; Leonard, A. W.*; Loarte, A.*; Maingi, R.*; et al.

Plasma Physics and Controlled Fusion, 48(5A), p.A171 - A181, 2006/05

 Times Cited Count:81 Percentile:92.09(Physics, Fluids & Plasmas)

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1