Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamashita, Kiyoto; Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke
JAEA-Technology 2023-023, 97 Pages, 2024/03
The incinerator adopted to incineration room, Plutonium Waste Treatment Facility had been demonstrated since 2002 for developing technologies to reduce the volume of fire-resistant wastes such as vinyl chloride (represented by Polyvinyl chloride bags) and rubber gloves for Radio Isotope among radioactive solid wastes generated by the production of mixed oxide fuels. The incinerator, cooling tower, and processing pipes were replaced with a suspension period from 2018 to 2022, which fireproof materials on the inner wall of the incinerator was cracked and grown caused by hydrogen chloride generated when disposing of fire-resistant wastes. This facility consists of the waste feed process, the incineration process, the waste gas treatment process, and the ash removal process. We replaced the cooling tower in the waste gas treatment process from March 2020 to March 2021, and the incinerator in the incineration process from January 2021 to February 2022. In addition, samples were collected from the incinerator and the cooling tower during the removing and dismantling of the replaced devices, observed by Scanning Electron Microscope and X-ray microanalyzer, and analyzed by X-ray diffraction to investigate the corrosion and deterioration of them. This report describes the method of setting up the green house, the procedure for replacing them, and the results from analysis in corrosion and deterioration of the cooling tower and incinerator.
Yamashita, Kiyoto; Yokoyama, Aya*; Takagai, Yoshitaka*; Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke
JAEA-Technology 2022-020, 106 Pages, 2022/10
Radioactive solid wastes generated by Fukushima Daiichi Nuclear Power Station disaster may contain high levels of salt from the tsunami and seawater deliberately released into the area. It is assumed that polyvinyl chloride (PVC) products may be used for decommissioning work and for containment of radioactive wastes in the future. Among the method of handling them, incineration is one method that needs to be investigated as it is good method for reduction and stabilization of wastes. But in order to dispose of Trans-Uranic (TRU) solid waste containing chlorides, it is necessary to select the structure and materials of the facility based on the information such as the movement of nuclides and chlorides in the waste gas treating system and the corrosion of equipment due to chlorides. Therefore, we decided to get various data necessary to design a study of the incineration facilities. And we decided to examine the transfer behavior of chlorides to the waste gas treatment system, the corrosion-resistance of materials in the incineration facilities, and the distribution survey of plutonium in them obtained using the Plutonium-contaminated Waste Treatment Facility (PWTF), Nuclear Fuel Cycle Engineering Laboratories, which is a unique incinerating facility in Japan. This report describes the transfer behavior of chlorides in the waste gas treatment system, the evaluation of corrosion-resistance materials and the distribution survey of plutonium in the incineration facilities obtained by these tests using the Plutonium-contaminated Waste Treatment Facility, Nuclear Fuel Cycle Engineering Laboratories.
Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.
Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03
Times Cited Count:53 Percentile:96.13(Astronomy & Astrophysics)Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200
C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.
Fujita, Satoshi*; Kuma, Kenshi*; Ishikawa, Satoko*; Nishimura, Shotaro*; Nakayama, Yuta*; Ushizaka, Satomi*; Isoda, Yutaka*; Otosaka, Shigeyoshi; Aramaki, Takafumi*
Journal of Geophysical Research, 115(C12), p.C12001_1 - C12001_12, 2010/12
Times Cited Count:16 Percentile:38.97(Oceanography)Vertical distributions of dissolved iron (D-Fe, less than 0.22 micrometer fraction), total iron (T-Fe, unfiltered), and chemical and biological components (e.g., nutrients) in seawater were determined at seven stations in the Japan Sea to understand the mechanisms that control iron behavior. Distributions of the D-Fe were characterized by surface depletion, mid-depth maxima, then slight decrease with depth in deep water and uniform concentration in bottom water because of biological uptake in the surface water and release from microbial decomposition of sinking organic matter in mid-depth water. The T-Fe concentrations in the deep-water column were variable with different T-Fe levels among stations and depths. We found a significant relationship of the exponential increase in the T-Fe concentrations with decreasing water transmittance, resulting from the iron supply into the deep and bottom waters due to the lateral transport of resuspended sediment from the continental slope.
Sekimoto, Hitoshi*; Kawachi, Naoki; Honda, Shuzo*; Yamaguchi, Yoshie*; Kato, Shota*; Yoneyama, Kaori*; Fujimaki, Shu; Suzui, Nobuo; Ishii, Satomi; Watanabe, Satoshi; et al.
JAEA-Review 2007-060, JAEA Takasaki Annual Report 2006, P. 124, 2008/03
no abstracts in English
Sekimoto, Hitoshi; Honda, Shuzo*; Kato, Shota*; Ochiai, Yukiko*; Yoneyama, Kaori*; Yoneyama, Koichi*; Takeuchi, Yasutomo*; Kawachi, Naoki; Fujimaki, Shu; Suzui, Nobuo; et al.
JAEA-Review 2006-042, JAEA Takasaki Annual Report 2005, P. 125, 2007/02
Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke; Osawa, Takayasu
no journal, ,
no abstracts in English
Fukui, Masahiro; Yokosuka, Kazuhiro; Maki, Shota; Shibata, Yuichi; Shigihara, Yuta; Ouchi, Takahiro; Minouchi, Hiroyuki; Iemura, Keisuke
no journal, ,
no abstracts in English
Sawada, Sho; Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke; Osawa, Takayasu
no journal, ,
no abstracts in English
Maki, Shota; Shibata, Yuichi; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke; Osawa, Takayasu
no journal, ,
no abstracts in English
Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke; Osawa, Takayasu
no journal, ,
no abstracts in English
Yokosuka, Kazuhiro; Maki, Shota; Fukui, Masahiro; Shibata, Yuichi; Iemura, Keisuke; Osawa, Takayasu
no journal, ,
no abstracts in English
Maki, Shota; Yamashita, Kiyoto; Yokosuka, Kazuhiro; Fukui, Masahiro; Watahiki, Masatoshi
no journal, ,
Plutonium contaminated flame retardant wastes often contain chlorides it has become a key issue to establish required technologies for incinerating them, effectively. However, due to long-term operation, multiple cracks originating from the combustion air holes that supply combustion-promoting air into the furnace and the refractory inside the incinerator become more embrittled, making it difficult to continue safe operation. As a result, we set up an enclosure to prevent the spread of contamination, replaced the incinerator within it, and obtained data that can be reflected in the development of future incineration equipment.
Maki, Shota
no journal, ,
no abstracts in English
Maki, Shota; Fukui, Masahiro; Iemura, Keisuke; Osawa, Takayasu
no journal, ,
no abstracts in English
Yokosuka, Kazuhiro; Maki, Shota; Fukui, Masahiro; Iemura, Keisuke; Osawa, Takayasu
no journal, ,
no abstracts in English
Maki, Shota; Yokosuka, Kazuhiro; Shibata, Yuichi; Fukui, Masahiro; Iemura, Keisuke
no journal, ,
no abstracts in English
Yamashita, Kiyoto; Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke
no journal, ,
no abstracts in English