Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Dronskowski, R.*; Brckel, T.*; Kohlmann, H.*; Avdeev, M.*; Houben, A.*; Meven, M.*; Hofmann, M.*; Kamiyama, Takashi*; Zobel, M.*; Schweika, W.*; et al.
Zeitschrift fr Kristallographie; Crystalline Materials, 239(5-6), p.139 - 166, 2024/06
Because of the neutron's special properties, neutron diffraction may be considered one of the most powerful techniques for structure determination of crystalline and related matter. Neutrons can be released from nuclear fission, from spallation processes, and also from low-energy nuclear reactions, and they can then be used in powder, time-of-flight, texture, single crystal, and other techniques, all of which are perfectly suited to clarify crystal and magnetic structures. With high neutron flux and sufficient brilliance, neutron diffraction also excels for diffuse scattering, for in situ and operando studies as well as for high-pressure experiments of today's materials. In this primer, we summarize the current state of neutron diffraction (and how it came to be), but also look at recent advances and new ideas, e.g., the design of new instruments, and what follows from that.
Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
Times Cited Count:1 Percentile:63.95(Physics, Nuclear)no abstracts in English
Tamii, Atsushi*; Pellegri, L.*; Sderstr
m, P.-A.*; Allard, D.*; Goriely, S.*; Inakura, Tsunenori*; Khan, E.*; Kido, Eiji*; Kimura, Masaaki*; Litvinova, E.*; et al.
European Physical Journal A, 59(9), p.208_1 - 208_21, 2023/09
Times Cited Count:5 Percentile:77.95(Physics, Nuclear)no abstracts in English
Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:24 Percentile:95.07(Multidisciplinary Sciences)no abstracts in English
Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Times Cited Count:7 Percentile:83.07(Astronomy & Astrophysics)Gamma decays were observed in Ca and
Ca following quasi-free one-proton knockout reactions from
Sc. For
Ca, a
ray transition was measured to be 1456(12) keV, while for
Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the
decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for
level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the
and
orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic
Ca and potentially drives the dripline of Ca isotopes to
Ca or even beyond.
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Times Cited Count:4 Percentile:62.61(Astronomy & Astrophysics)Detailed -ray spectroscopy of the exotic neon isotope
Ne has been performed using the one-neutron removal reaction from
Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for
Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Yates, D.*; Krcken, R.*; Dillmann, I.*; Garrett, P. E.*; Smallcombe, J.; 44 of others*
Physical Review C, 107(6), p.064309_1 - 064309_20, 2023/06
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Meer, H.*; Wust, S.*; Schmitt, C.*; Herrgen, P.*; Fuhrmann, F.*; Hirtle, S.*; Bednarz, B.*; Rajan, A.*; Ramos, R.*; Nio, M. A.*; et al.
Advanced Functional Materials, 33(21), p.2213536_1 - 2213536_6, 2023/05
Times Cited Count:5 Percentile:60.56(Chemistry, Multidisciplinary)Elekes, Z.*; Juhsz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12
Times Cited Count:2 Percentile:33.33(Physics, Nuclear)The low-lying level structure of V and
V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for
V while the neutron knock-out reaction provided the data for
V. Four and five new transitions were determined for
V and
V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed
rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2
and 9/2
levels. The (
,
) excitation cross sections for
V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation,
V could not be unambiguously placed on the island of inversion.
Enciu, M.*; Liu, H. N.*; Obertelli, A.*; Doornenbal, P.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review Letters, 129(26), p.262501_1 - 262501_7, 2022/12
Times Cited Count:16 Percentile:82.72(Physics, Multidisciplinary)The one-neutron knockout from Ca was performed at
230 MeV/nucleon combined with prompt
spectroscopy. The momentum distributions corresponding to the removal of
and
neutrons were measured. The cross sections are consistent with a shell closure at the neutron number
, found as strong as at
and
in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron
and
orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the
orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.
Ramadhan, R. S.*; Glaser, D.*; Soyama, Hitoshi*; Kockelmann, W.*; Shinohara, Takenao; Pirling, T.*; Fitzpatrick, M. E.*; Tremsin, A. S.*
Acta Materialia, 239, p.118259_1 - 118259_12, 2022/10
Times Cited Count:9 Percentile:60.94(Materials Science, Multidisciplinary)Shizuma, Toshiyuki*; Endo, Shunsuke; Kimura, Atsushi; Massarczyk, R.*; Schwengner, R.*; Beyer, R.*; Hensel, T.*; Hoffmann, H.*; Junghans, A.*; Rmer, K.*; et al.
Physical Review C, 106(4), p.044326_1 - 044326_11, 2022/10
Times Cited Count:1 Percentile:18.70(Physics, Nuclear)no abstracts in English
Yakushev, A.*; Lens, L.*; Dllmann, Ch. E.*; Khuyagbaatar, J.*; J
ger, E.*; Krier, J.*; Runke, J.*; Albers, H. M.*; Asai, Masato; Block, M.*; et al.
Frontiers in Chemistry (Internet), 10, p.976635_1 - 976635_11, 2022/08
Times Cited Count:19 Percentile:80.11(Chemistry, Multidisciplinary)Flerovium (Fl, element 114) is the heaviest element chemically studied so far. The first chemical experiment on Fl suggested that Fl is a noble-gas-like element, while the second studies suggested that Fl has a volatile-metal-like character. To obtain more reliable conclusion, we performed further experimental studies on Fl adsorption behavior on Si oxide and gold surfaces. The present results suggest that Fl is highly volatile and less reactive than the volatile metal, Hg, but has higher reactivity than the noble gas, Rn.
Bronis, A.*; Heberger, F. P.*; Antalic, S.*; Andel, B.*; Ackermann, D.*; Heinz, S.*; Hofmann, S.*; Khuyagbaatar, J.*; Kindler, B.*; Kojouharov, I.*; et al.
Physical Review C, 106(1), p.014602_1 - 014602_12, 2022/07
Times Cited Count:6 Percentile:68.58(Physics, Nuclear)Tregoning, R.*; Wallace, J.*; Bouydo, A.*; Costa-Garrido, O.*; Dillstrm, P.*; Duan, X.*; Heckmann, K.*; Kim, Y.-B.*; Kim, Y.*; Kurth-Twombly, E.*; et al.
Transactions of the 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 11 Pages, 2022/07
Fourteen organizations, representing eleven countries, participated in a leak-before-break (LBB) benchmark exercise that compared results from analyses among participating countries and identified the effects of weld residual stress (WRS) and crack morphology on crack opening displacement (COD), critical bending moment (CBM), and leak rate (LR) results. The participants determined whether the initial problem would meet their country's LBB acceptance criteria and then evaluated the effects of crack morphology and WRS for a prescribed crack size, geometry and loading. Six out of fourteen participants indicated that the initial problem met their LBB requirements. In the follow-on tasks, differences among the participant's CBM predictions were principally due to the material properties used in the analysis while the type of failure model chosen contributed much less. Most of the differences in the LR predictions were directly attributable to differences among the COD models, but a portion was attributable to the treatment of crack face pressure (CFP). The benchmark identified several aspects of an LBB analysis that could support a more realistic evaluation.
Busi, M.*; Polatidis, E.*; Malamud, F.*; Kockelmann, W.*; Morgano, M.*; Kaestner, A.*; Tremsin, A.*; Kalentics, N.*; Log, R.*; Leinenbach, C.*; et al.
Physical Review Materials (Internet), 6(5), p.053602_1 - 053602_8, 2022/05
Times Cited Count:12 Percentile:63.57(Materials Science, Multidisciplinary)Koiwai, Takuma*; Wimmer, K.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Duguet, T.*; Holt, J. D.*; Miyagi, Takayuki*; Navrtil, P.*; Ogata, Kazuyuki*; et al.
Physics Letters B, 827, p.136953_1 - 136953_7, 2022/04
Times Cited Count:6 Percentile:68.58(Astronomy & Astrophysics)no abstracts in English
Doherty, D. T.*; Andreyev, A. N.; Seweryniak, D.*; Woods, P. J.*; Carpenter, M. P.*; Auranen, K.*; Ayangeakaa, A. D.*; Back, B. B.*; Bottoni, S.*; Canete, L.*; et al.
Physical Review Letters, 127(20), p.202501_1 - 202501_6, 2021/11
Times Cited Count:10 Percentile:65.49(Physics, Multidisciplinary)Fittipaldi, R.*; Hartmann, R.*; Mercaldo, M. T.*; Komori, Sachio*; Bjrlig, A.*; Higemoto, Wataru; Maeno, Yoshiteru*; Di Bernardo, A.*; 18 of others*
Nature Communications (Internet), 12, p.5792_1 - 5792_9, 2021/10
Times Cited Count:22 Percentile:75.49(Multidisciplinary Sciences)The layered oxide perovskite SrRuO
, which has been intensively investigated due to its unusual properties. Whilst the debate on the symmetry of the superconducting state in Sr
RuO
is still ongoing, a deeper understanding of the Sr
RuO
normal state appears crucial as this is the background in which electron pairing occurs. Here, by using low-energy muon spin spectroscopy we discover the existence of surface magnetism in Sr
RuO
at an onset temperature higher than 50 K. Our observations set a reference for the discovery of the same magnetic phase in other materials.
Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Chen, S.*; Chung, L. X.*; Duguet, T.*; Gmez-Ramos, M.*; et al.
Physical Review C, 104(4), p.044331_1 - 044331_16, 2021/10
Times Cited Count:9 Percentile:73.07(Physics, Nuclear)no abstracts in English