Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Nuclear data sheets for A=218

Singh, B.*; Basunia, M. S.*; Martin, M.*; McCutchan, E. A.*; Bara, I.*; Caballero-Folch, R.*; Canavan, R.*; Chakrabarti, R.*; Chekhovska, A.*; Grinder, M. M.*; et al.

Nuclear Data Sheets, 160, p.405 - 471, 2019/09

 Times Cited Count:10 Percentile:71.88(Physics, Nuclear)

Journal Articles

Super-absorbent polymer valves and colorimetric chemistries for time-sequenced discrete sampling and chloride analysis of sweat via skin-mounted soft microfluidics

Kim, S. B.*; Zhang, Y.*; Won, S. M.*; Bandodkar, A. J.*; Sekine, Yurina; Xue, Y.*; Koo, J.*; Harshman, S. W.*; Martin, J. A.*; Park, J. M.*; et al.

Small, 14(12), p.1703334_1 - 1703334_11, 2018/03

 Times Cited Count:98 Percentile:95.52(Chemistry, Multidisciplinary)

Journal Articles

The Martian surface radiation environment; A Comparison of models and MSL/RAD measurements

Matthi$"a$, D.*; Ehresmann, B.*; Lohf, H.*; K$"o$hler, J.*; Zeitlin, C.*; Appel, J.*; Sato, Tatsuhiko; Slaba, T. C.*; Martin, C.*; Berger, T.*; et al.

Journal of Space Weather and Space Climate (Internet), 6, p.A13_1 - A13_17, 2016/03

 Times Cited Count:65 Percentile:93.52(Astronomy & Astrophysics)

The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. In this work, several models such as GEANT4, PHITS, and HZETRN/OLTARIS are used to predict the radiation environment caused by galactic cosmic rays on Mars in order to compare and validate them with the experimental results. Although good agreement is found in many cases for GEANT4, PHITS and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude, discrepancies in certain particle spectra. We have found that RAD data is helping make better choices of input parameters and physical models. These results help to predict dose rates for future manned missions as well as to perform shield optimization studies.

Journal Articles

IAEA NAPRO Coordinated Research Project; Physical properties of sodium

Passerini, S.*; Carardi, C.*; Grandy, C.*; Azpitarte, O. E.*; Chocron, M.*; Japas, M. L.*; Bubelis, E.*; Perez-Martin, S.*; Jayaraj, S.*; Roelofs, F.*; et al.

Proceedings of 2015 International Congress on Advances in Nuclear Power Plants (ICAPP 2015) (CD-ROM), p.780 - 790, 2015/05

Journal Articles

Overview of high priority ITER diagnostic systems status

Walsh, M.*; Andrew, P.*; Barnsley, R.*; Bertalot, L.*; Boivin, R.*; Bora, D.*; Bouhamou, R.*; Ciattaglia, S.*; Costley, A. E.*; Counsell, G.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Journal Articles

Progress in the ITER physics basis, 2; Plasma confinement and transport

Doyle, E. J.*; Houlberg, W. A.*; Kamada, Yutaka; Mukhovatov, V.*; Osborne, T. H.*; Polevoi, A.*; Bateman, G.*; Connor, J. W.*; Cordey, J. G.*; Fujita, Takaaki; et al.

Nuclear Fusion, 47(6), p.S18 - S127, 2007/06

no abstracts in English

Journal Articles

Scattering of $$^{11}$$Be halo nucleus from $$^{209}$$Bi at coulomb barrier

Mazzocco, M.*; Signorini, C.*; Romoli, M.*; De Francesco, A.*; Di Pietro, M.*; Vardaci, E.*; Yoshida, Koichi*; Yoshida, Atsushi*; Bonetti, R.*; De Rosa, A.*; et al.

European Physical Journal A, 28(3), p.295 - 299, 2006/06

 Times Cited Count:46 Percentile:90.03(Physics, Nuclear)

The scattering of the radioactive, weakly bound, halo nucleus $$^{11}$$Be from $$^{209}$$Bi has been studied at 40 MeV. The measurement performed with a low-intensity and a large-emittance secondary beam could be made using an extremely compact, large solid angle ($$sim$$ 2$$pi$$ sr) detecting set-up, based on 8 highly segmented Si telescopes. The $$^{9,11}$$Be scattering angular distributions, as well as their relative reaction cross-sections, resulted to be rather similar. This may suggest that at Coulomb barrier energies the halo structure and the small weakly binding energy of the $$^{11}$$Be projectile have no big influence on the reaction dynamics.

Journal Articles

Design improvements and R&D achievements for vacuum vessel and in-vessel components towards ITER construction

Ioki, Kimihiro*; Barabaschi, P.*; Barabash, V.*; Chiocchio, S.*; Daenner, W.*; Elio, F.*; Enoeda, Mikio; Gervash, A.*; Ibbott, C.*; Jones, L.*; et al.

Nuclear Fusion, 43(4), p.268 - 273, 2003/04

 Times Cited Count:21 Percentile:54.59(Physics, Fluids & Plasmas)

Although the basic concept of the vacuum vessel (VV) and in-vessel components of the ITER design has stayed the same, there have been several detailed design improvements resulting from efforts to raise reliability, to improve maintainability and to save money. One of the most important achievements in the VV R&D has been demonstration of the necessary fabrication and assembly tolerances. Recently the deformation due to cutting of the port extension was measured and it was shown that the deformation is small and acceptable. Further development of advanced methods of cutting, welding and NDT on a thick plate have been continued in order to refine manufacturing and improve cost and technical performance. With regard to the related FW/blanket and divertor designs, the R&D has resulted in the development of suitable technologies. Prototypes of the FW panel, the blanket shield block and the divertor components have been successfully fabricated.

Journal Articles

Remote handling systems for ITER

Honda, Tsutomu*; Hattori, Yukiya*; Holloway, C.*; Martin, E.*; Matsumoto, Yasuhiro*; Matsunobu, Takashi*; Suzuki, Toshiyuki*; Tesini, A.*; Baulo, V.*; Haange, R.*; et al.

Fusion Engineering and Design, 63-64, p.507 - 518, 2002/12

 Times Cited Count:16 Percentile:69.83(Nuclear Science & Technology)

The requirement to reduce the construction cost for ITER as compared with the 1998 ITER design, has led to a reduction in the size of the ITER machine and a number of design changes which have an impact on the remote maintenance of ITER. Major components to be considered for remote handling (RH) include the divertor cassettes, shield blanket modules, neutral beamline components, as well as in-port components, which are integrated with the port shield plug such as auxiliary heating equipment, limiters and test blanket modules. The design of the following equipment has been adapted for the smaller machine with reduced access space for the RH equipment: the RH equipment used for the in-vessel RH operationsto be deployed from the casks, the RH equipment that is used to remove the in-port assemblies (port plugs), as well as the remotely operated casks, which can be attached to and removed from vacuum vessel ports by using double -door systems. Defective components are loaded in transfer casks and moved to the hot cell facility by means of a remotely-operated air floatation system attached underneath the cask, where they dock against identical port interfaces and unload the component for remote refurbishment and/or waste storage.

Oral presentation

An Overview and key results from the long term in situ diffusion project (ltd) at the Grimsel Test Site, Switzerland

Martin, A.*; Fukatsu, Yuta; Tachi, Yukio; Ishida, Keisuke*; Muuri, E.*; Siitari-Kauppi, M.*; Havlov$'a$, V.*; Vokal, A.*

no journal, , 

10 (Records 1-10 displayed on this page)
  • 1