Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Stabilization of post-experiment nuclear materials in Plutonium Fuel Research Facility

Sato, Takumi; Otobe, Haruyoshi; Morishita, Kazuki; Marufuji, Takato; Ishikawa, Takashi; Fujishima, Tadatsune; Nakano, Tomoyuki

JAEA-Technology 2023-016, 41 Pages, 2023/09

JAEA-Technology-2023-016.pdf:2.74MB

This report summarizes the results of the stabilization treatments of post-experiment nuclear materials in Plutonium Fuel Research Facility (PFRF) from August 2018 to March 2021. Based on the management standards for nuclear materials enacted after the contamination accident that occurred at PFRF on June 6, 2017, the post-experiment nuclear materials containing plutonium (Pu): samples mixed with organic substances that cause an increase in internal pressure due to radiolysis (including X-ray diffraction samples mixed with epoxy resin and plutonium powder which caused contamination accidents), carbides and nitrides samples which is reactive in air, and chloride samples which may cause corrosion of storage containers, were selected as targets of the stabilization. The samples containing organic materials, carbides and nitrides were heated in an air flow at 650 $$^{circ}$$C and 950 $$^{circ}$$C for 2 hours respectively to remove organic materials and convert uranium (U) and Pu into oxides. U and Pu chlorides in LiCl-KCl eutectic melt were reduced and extracted into liquid Cd metal by a reaction with lithium (Li) -cadmium (Cd) alloy and converted to U-Pu-Cd alloy at 500 $$^{circ}$$C or higher. All of the samples were stabilized and stored at PFRF. We hope that the contents of this report will be utilized to consider methods for stabilizing post experiment nuclear materials at other nuclear fuel material usage facilities.

JAEA Reports

Technical design of the pressure-resistant chamber for open inspections of the storage containers of nuclear fuel materials

Marufuji, Takato; Sato, Takumi; Ito, Hideaki; Suzuki, Hisashi; Fujishima, Tadatsune; Nakano, Tomoyuki

JAEA-Technology 2019-006, 22 Pages, 2019/05

JAEA-Technology-2019-006.pdf:2.84MB

Radioactive contamination incident occurred at Plutonium Fuel Research Facility (PFRF) in Oarai Research and Development Institute, Japan Atomic Energy Agency on June 6, 2017. During inspection work of storage container containing nuclear fuel materials, the PVC bag packaging in the storage container ruptured when a worker opened the lid in the hood, and a part of contents was spattered over the room. The cause of the increase of internal pressure of the storage container was gas generation by alpha radiolysis of the epoxy resin mixed with nuclear fuel materials. Opening inspection of about 70 similar containers stored in PFRF has been planned to confirm the condition of the contents and to stabilize the stored materials containing organic compounds. For safe and reliable open inspection of the storage containers with high internal pressure in the glove box, it is necessary to develop a pressure-resistant chamber in which the storage containers are opened and the contents are inspected under gastight condition. This report summarizes the concerns and countermeasures of the chamber design and the design results of the chamber.

2 (Records 1-2 displayed on this page)
  • 1