Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Geochemical factors for secondary mineral formation at naturally-occurring hyperalkaline spring in Oman ophiolite

Anraku, Sohtaro; Matsubara, Isamu*; Morimoto, Kazuya*; Sato, Tsutomu*

Nendo Kagaku, 55(2), p.17 - 30, 2017/00

Anionic radionuclides are important for the long-term safety assessment of Japanese transuranic (TRU) waste disposal facilities. Degradation of cementitious materials used to construct the TRU waste disposal facilities, however, can produce a hyperalkaline leachate and so it is necessary to understand the reaction mechanisms that will control the behavior and fate of anionic radionuclides under these hyperalkaline conditions. An excellent natural analogue site to study relevant reaction mechanisms is provided in Oman where hyperalkaline spring waters (pH $$>$$ 11) from serpentinized peridotites discharge into moderately alkaline rivers. Aragonite was found in all secondary mineral samples, with accessory minerals of calcite, layered double hydroxide (LDH) and brucite. LDH was observed at the high Al concentration springs and brucite at the low Al concentration springs. Calcite was only found close to the springs. Distal calcite formation was inhibited due to high Mg concentrations in the river water. The spatial distribution of minerals therefore implicates the importance of the mixing ratio of spring to river water and the relative chemical compositions of the spring and river waters. Supporting mixing model calculations could successfully reproduce the precipitation of aragonite and LDH. The observed decrease in Ca concentration could be explained by aragonite precipitation. pH exerted a strong control on the precipitation of LDH and so too, therefore, on Al concentration. In the mixing water experiments containing up to 40% river water, LDH and brucite were both oversaturated, but brucite was not always identified by XRD. The possible inhibition of brucite by LDH precipitation was an unexpected result.

1 (Records 1-1 displayed on this page)
  • 1