Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 42

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Emergence of spin-orbit coupled ferromagnetic surface state derived from Zak phase in a nonmagnetic insulator FeSi

Otsuka, Yusuke*; Kanazawa, Naoya*; Hirayama, Motoaki*; Matsui, Akira*; Nomoto, Takuya*; Arita, Ryotaro*; Nakajima, Taro*; Hanashima, Takayasu*; Ukleev, V.*; Aoki, Hiroyuki; et al.

Science Advances (Internet), 7(47), p.eabj0498_1 - eabj0498_9, 2021/11

 Times Cited Count:8 Percentile:51.2(Multidisciplinary Sciences)

Journal Articles

High spectral resolution of diode laser absorption spectroscopy for isotope analysis using a supersonic plasma jet

Kuwahara, Akira; Aiba, Yasuaki*; Yamasaki, Shinya*; Nankawa, Takuya; Matsui, Makoto*

Journal of Analytical Atomic Spectrometry, 33(7), p.1150 - 1153, 2018/07

 Times Cited Count:7 Percentile:48.52(Chemistry, Analytical)

Although high-temperature plasma sources have been used for direct isotope analysis of solid samples, the spectral resolution of diode laser absorption spectroscopy in high-temperature plasma is limited by the Doppler broadening of atomic absorption lines. Thus, a decrease in translational temperature is necessary to enhance the spectral resolution and distinguish isotope shifts due to mass number. In this study, a supersonic plasma wind tunnel, also called an arc-jet plasma wind tunnel, was used to enhance spectral resolution drastically, and a demonstration was carried out using natural stable xenon isotopes. As a result, the temperature was found to be about 180 K and the spectral resolution was about one order of magnitude higher than that of the conventional high-temperature source. Additionally, the method proposed herein was verified by using two xenon isotopes.

Journal Articles

Development of an isotope analysis method based on diode laser absorption spectroscopy using an arc-jet plasma wind tunnel

Kuwahara, Akira; Aiba, Yasuaki*; Nankawa, Takuya; Matsui, Makoto*

Journal of Analytical Atomic Spectrometry, 33(5), p.893 - 896, 2018/05

 Times Cited Count:6 Percentile:42.9(Chemistry, Analytical)

no abstracts in English

Journal Articles

Shell evolution beyond $$Z$$=28 and $$N$$=50; Spectroscopy of $$^{81,82,83,84}$$Zn

Shand, C. M.*; Podoly$'a$k, Zs.*; G$'o$rska, M.*; Doornenbal, P.*; Obertelli, A.*; Nowacki, F.*; Otsuka, T.*; Sieja, K.*; Tostevin, J. A.*; Tsunoda, T.*; et al.

Physics Letters B, 773, p.492 - 497, 2017/10

 Times Cited Count:25 Percentile:87.8(Astronomy & Astrophysics)

Journal Articles

Neutron irradiation effect of high-density MoO$$_{3}$$ pellets for Mo-99 production, 3

Ishida, Takuya; Suzuki, Yoshitaka; Nishikata, Kaori; Yonekawa, Minoru; Kato, Yoshiaki; Shibata, Akira; Kimura, Akihiro; Matsui, Yoshinori; Tsuchiya, Kunihiko; Sano, Tadafumi*; et al.

KURRI Progress Report 2015, P. 64, 2016/08

no abstracts in English

Journal Articles

Cause investigation for thinning of anchor bolts and gaps between anchor bolt nuts and a flange plate at the JMTR Hot Laboratory exhaust stack

Shibata, Akira; Kitagishi, Shigeru; Watashi, Katsumi; Matsui, Yoshinori; Omi, Masao; Sozawa, Shizuo; Naka, Michihiro

Nihon Hozen Gakkai Dai-13-Kai Gakujutsu Koenkai Yoshishu, p.290 - 297, 2016/07

The exhaust stack of Japan Materials Testing Reactor Hot laboratory is a part of gaseous waste treatment system. It was built in 1970 and is 40 m in height. In 2015, thinning was found at some anchor bolts on base of the stack. When thinning of anchor bolts were investigated, gaps between anchor bolt nuts and flange plate was found. JAEA removed steel cylinder of stack which is 33 m in height for safety. In the end of investigation, thinning was found in all anchor bolts of the stack. Cause investigation for the thinning and the gaps were performed. It is concluded that the thinning was caused by water infiltration over a long period of time and the gaps were caused by elongation of thinning part of anchor bolts by the 2011 earthquake off the Pacific coast of Tohoku.

JAEA Reports

2013 training using JMTR and related facilities as advanced research infrastructures

Takemoto, Noriyuki; Kimura, Nobuaki; Hanakawa, Hiroki; Shibata, Akira; Matsui, Yoshinori; Nakamura, Jinichi; Ishitsuka, Etsuo; Nakatsuka, Toru; Ito, Haruhiko

JAEA-Review 2013-058, 42 Pages, 2014/02

JAEA-Review-2013-058.pdf:4.95MB

Practical training courses using the JMTR and related facilities as an advanced research infrastructures have been carried out in Japan Atomic Energy Agency since FY2010 from a viewpoint of the nuclear human resource development and the securing. In FY2013, "Training course for foreign young researchers and engineers" was carried out from July 8th to July 26th, and "Training course using JMTR and related facilities as advanced research infrastructures" for domestic young researchers and engineers was carried out from July 29th to August 9th. 18 young researchers and engineers were joined in each training course, and 36 trainees in total studied about basic nuclear research and technology through the lecture and training about the reactor operation management, safety management, irradiation test, etc. in the JMTR. The results of these courses are reported in this paper.

Journal Articles

Development of instrumentation systems for safety measure at LWR's severe accident

Takeuchi, Tomoaki; Shibata, Akira; Nagata, Hiroshi; Kimura, Nobuaki; Otsuka, Noriaki; Saito, Takashi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

Proceedings of 3rd Asian Symposium on Material Testing Reactors (ASMTR 2013), p.52 - 58, 2013/11

In-pile instrumentation systems in present LWR's are indispensable to monitor all situations during reactor operation and reactor shut down. However, those systems did not work sufficiently under the conditions like as the severe accident at the Fukushima Dai-Ichi Nuclear Power Station. Therefore, based on the irradiation measurement technique of experiences accumulated in JMTR, the developments of reactor instrumentation systems to prevent severe core damage accident in advance have been started. The development objects are four instrumentation systems, which are a solid electrolysis type hydrogen concentration sensor, a water gauge of thermocouple type equipped with the heater, a $$gamma$$-ray detector of self-powered type SPGD, and an image analysis system of Cherenkov light for quantification of in-reactor information by CCD cameras. After the developments, the in-pile verification tests of four instrumentation systems are planned at the JMTR.

Journal Articles

Product data models for the life cycle management system of tunnel construction

Xu, Z.*; Itakura, Kenichi*; Yamachi, Hiroshi*; Otsu, Shinichi*; Hayano, Akira; Matsui, Hiroya; Sato, Toshinori

Heisei-24 Nendo (2012 Nen) Shigen, Sozai Gakkai Shuki Taikai Koenshu, p.63 - 66, 2012/09

no abstracts in English

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2009

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.

JAEA-Review 2011-007, 145 Pages, 2011/03

JAEA-Review-2011-007.pdf:16.51MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.

JAEA Reports

Studies on planning and conducting for reducing water inflow due to underground construction in crystalline rock

Mikake, Shinichiro; Yamamoto, Masaru; Ikeda, Koki; Sugihara, Kozo; Takeuchi, Shinji; Hayano, Akira; Sato, Toshinori; Takeda, Shinichi; Ishii, Yoji; Ishida, Hideaki; et al.

JAEA-Technology 2010-026, 146 Pages, 2010/08

JAEA-Technology-2010-026.pdf:41.08MB
JAEA-Technology-2010-026-appendix(CD-ROM).zip:83.37MB

The Mizunami Underground Research Laboratory (MIU), one of the main facilities in Japan for research and development of the technology for high-level radioactive waste disposal, is under construction in Mizunami City. In planning the construction, it was necessary to get reliable information on the bedrock conditions, specifically the rock mass stability and hydrogeology. Therefore, borehole investigations were conducted before excavations started. The results indicated that large water inflow could be expected during the excavation around the Ventilation Shaft at GL-200m and GL-300m Access/Research Gallery. In order to reduce water inflow, pre-excavation grouting was conducted before excavation of shafts and research tunnels. Grouting is the injection of material such as cement into a rock mass to stabilize and seal the rock. This report describes the knowledge and lessons learned during the planning and conducting of pre-excavation grouting.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2010

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-029, 28 Pages, 2010/08

JAEA-Review-2010-029.pdf:3.43MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based investigation phase (Phase1), Construction phase (Phase2) and Operation phase (Phase3). The project is currently under the construction phase, and the operation phase starts in 2010. This document introduces the research and development activities planned for 2010 fiscal year plan based on the MIU master plan updated in 2010, (1) Investigation plan, (2) Construction plan, (3) Research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2008

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-014, 110 Pages, 2010/07

JAEA-Review-2010-014.pdf:27.34MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2008, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2009

Takeuchi, Shinji; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Amano, Kenji; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2009-017, 29 Pages, 2009/08

JAEA-Review-2009-017.pdf:3.69MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2009 fiscal year plan based on the MIU Master Plan updated in 2002, (1) Investigation Plan, (2) Construction Plan, (3) Research Collaboration Plan, etc.

Journal Articles

In-core SCC growth behavior of type 304 stainless steel in BWR simulated high-temperature water at JMTR

Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi; Nakano, Junichi; Matsui, Yoshinori; Kawamata, Kazuo; Shibata, Akira; Omi, Masao; Nagata, Nobuaki*; Dozaki, Koji*; et al.

Journal of Nuclear Science and Technology, 45(8), p.725 - 734, 2008/08

 Times Cited Count:7 Percentile:44.46(Nuclear Science & Technology)

Irradiation assisted stress corrosion cracking (IASCC) is one of the critical concerns when stainless steel components have been in service in light water reactors for a long period. In-core IASCC growth tests have been carried out using the compact tension type specimens of type 304 stainless steel that had been pre-irradiated up to a neutron fluence level around 1$$times$$10$$^{25}$$n/m$$^{2}$$ in pure water simulated boiling water reactor (BWR) coolant condition at the Japan Materials Testing Reactor (JMTR). In order to investigate the effect of synergy of neutron/$$gamma$$ radiation and stress/water environment on IASCC growth rate, we performed ex-core IASCC tests on irradiated specimens at several dissolved oxygen contents environments under the same electrochemical potential condition. In this paper, results of the in-core SCC growth tests will be discussed and compared with the result obtained by ex-core tests from a viewpoint of the synergistic effects on IASCC.

JAEA Reports

Development of welding techniques for assembling of IASCC Test Capsule

Shibata, Akira; Kawamata, Kazuo; Taguchi, Taketoshi; Kaji, Yoshiyuki; Shimizu, Michio*; Kanazawa, Yoshiharu; Matsui, Yoshinori; Iwamatsu, Shigemi; Sozawa, Shizuo; Tayama, Yoshinobu; et al.

JAEA-Technology 2008-029, 40 Pages, 2008/03

JAEA-Technology-2008-029.pdf:25.78MB

Irradiation assisted stress corrosion cracking (IASCC) is considered to be one of the key issues from a viewpoint of the life management of core components in the aged Light Water Reactors. The in-situ crack extension examination and the in-situ constant load tensile test in the reactor are required for the study of IASCC. There are, however, some technical hurdles to be overcome for the experiments. For this in-situ IASCC test, techniques for assembling pre-irradiated specimens into an capsule in a hot cell by remote handling are necessary. In this report, I describe the establishment of those remote assembling techniques and development of new welding apparatus and the TIG upset welding for stainless tube of 3 mm in thickness. Already IASCC capsules having pre-irradiated CT specimens were remotely assembled using these techniques in the hot cell for performing crack growth tests under irradiation in JMTR. And eight in-situ IASCC capsules have been finished successfully in JMTR.

Journal Articles

Development of advanced superconducting coil technologies for the National Centralized Tokamak

Kizu, Kaname; Miura, Yushi*; Tsuchiya, Katsuhiko; Ando, Toshinari*; Koizumi, Norikiyo; Matsui, Kunihiro*; Sakasai, Akira; Tamai, Hiroshi; Matsukawa, Makoto; Ishida, Shinichi; et al.

Nuclear Fusion, 45(11), p.1302 - 1308, 2005/11

 Times Cited Count:4 Percentile:14.23(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Application of react-and-wind method to D-shaped test coil using the 20 kA Nb$$_{3}$$Al conductor developed for JT-60SC

Kizu, Kaname; Miura, Yushi; Tsuchiya, Katsuhiko; Koizumi, Norikiyo; Matsui, Kunihiro; Ando, Toshinari*; Hamada, Kazuya; Hara, Eiji*; Imahashi, Koichi*; Ishida, Shinichi; et al.

IEEE Transactions on Applied Superconductivity, 14(2), p.1535 - 1538, 2004/06

 Times Cited Count:1 Percentile:11.55(Engineering, Electrical & Electronic)

no abstracts in English

Journal Articles

Fusion blanket construction

Konishi, Satoshi*; Kimura, Akihiko*; Akiba, Masato; Nakamura, Hiroo; Nagasaka, Takuya*; Muroga, Takeo*; Hasegawa, Akira*; Matsui, Hideki*

Nihon Genshiryoku Gakkai-Shi, 46(5), p.311 - 322, 2004/05

no abstracts in English

Journal Articles

Advanced fusion technologies developed for JT-60 superconducting Tokamak

Sakasai, Akira; Ishida, Shinichi; Matsukawa, Makoto; Akino, Noboru; Ando, Toshinari*; Arai, Takashi; Ezato, Koichiro; Hamada, Kazuya; Ichige, Hisashi; Isono, Takaaki; et al.

Nuclear Fusion, 44(2), p.329 - 334, 2004/02

no abstracts in English

42 (Records 1-20 displayed on this page)