Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a large-area alpha imaging detector for hand and foot monitors

Morishita, Yuki; Higuchi, Mikio*; Kaneko, Junichi*; Kitagawa, Yuichi*; Akedo, Jun*; Soma, Mitsugu*; Matsui, Hiroaki*

Nuclear Instruments and Methods in Physics Research A, 1057, p.168702_1 - 168702_8, 2023/12

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

This paper describes the development of a large-area imaging detector capable of measuring the detailed distribution of alpha particles on hands and feet for use in entry/exit control monitors in decommissioning sites such as the Fukushima Daiichi Nuclear Power Plant. The detector was developed using a commercially available ZnS(Ag) scintillator and an electron multiplying CCD camera. The effectiveness of the detector was evaluated by measuring several types of radiation sources, and the results showed that it was possible to detect the position of alpha particles in a very short time, and contamination levels of up to 11 Bq/cm$$^{2}$$ could be visualized. As a result of the minimal detectable surface activity concentration evaluations, 2.0 minutes or more is required to achieve 4 Bq/cm$$^{2}$$, and 25.0 minutes or more is required to achieve 0.4 Bq/cm$$^{2}$$. The field of view of the detector was also checked, and it was confirmed that the setup had a field of view that could cover most of the hand and the sole of the shoe. This detector is expected to be useful for preventing internal uptake and decontamination.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2012

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.

JAEA-Review 2012-028, 31 Pages, 2012/08

JAEA-Review-2012-028.pdf:3.86MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2010

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.

JAEA-Review 2012-020, 178 Pages, 2012/06

JAEA-Review-2012-020.pdf:33.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Takeuchi, Ryuji; Saegusa, Hiromitsu; Mizuno, Takashi; Sato, Toshinori; Ogata, Nobuhisa; et al.

JAEA-Review 2011-027, 30 Pages, 2011/08

JAEA-Review-2011-027.pdf:4.18MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase, and the Operation Phase. This document introduces the research and development activities planned for 2011 fiscal year plan based on the MIU Master Plan updated in 2010, Investigation Plan, Construction Plan and Research Collaboration Plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2009

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.

JAEA-Review 2011-007, 145 Pages, 2011/03

JAEA-Review-2011-007.pdf:16.51MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2010

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-029, 28 Pages, 2010/08

JAEA-Review-2010-029.pdf:3.43MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based investigation phase (Phase1), Construction phase (Phase2) and Operation phase (Phase3). The project is currently under the construction phase, and the operation phase starts in 2010. This document introduces the research and development activities planned for 2010 fiscal year plan based on the MIU master plan updated in 2010, (1) Investigation plan, (2) Construction plan, (3) Research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2008

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-014, 110 Pages, 2010/07

JAEA-Review-2010-014.pdf:27.34MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2008, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2009

Takeuchi, Shinji; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Amano, Kenji; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2009-017, 29 Pages, 2009/08

JAEA-Review-2009-017.pdf:3.69MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2009 fiscal year plan based on the MIU Master Plan updated in 2002, (1) Investigation Plan, (2) Construction Plan, (3) Research Collaboration Plan, etc.

Oral presentation

R&D project on irradiation damage management technology for structural materials of long-life nuclear plant; R&D of irradiation damage indicator and irradiation damage management

Wakai, Eiichi; Takada, Fumiki; Takaya, Shigeru; Kato, Shoichi; Kitazawa, Sin-iti; Okubo, Nariaki; Suzudo, Tomoaki; Fujii, Kimio; Yoshitake, Tsunemitsu; Kaji, Yoshiyuki; et al.

no journal, , 

no abstracts in English

Oral presentation

Mizunami Underground Research Laboratory Project, 2; Current status of development of engineering technology for deep underground

Asai, Hideaki; Matsui, Hiroya; Mikake, Shinichiro; Ito, Hiroaki; Horiuchi, Yasuharu; Ishii, Yoji

no journal, , 

The Mizunami Underground Research Laboratory (MIU) is currently being constructed by Japan Atomic Energy Agency. As part of MIU Project, development of engineering technology for deep underground intended for the crystalline rock is executed. The research to confirm the effectiveness of engineering technology is being executed during its excavation now. It reports on study results up to 300m in depth of engineering technology research and the schedule for the future.

Oral presentation

Effects of DPA and helium production on radiation damage microstructures and the mechanical properties in irradiated austenitic stainless steels and ferritic steel

Wakai, Eiichi; Takaya, Shigeru; Nagae, Yuji; Suzudo, Tomoaki; Hirade, Tetsuya; Matsui, Yoshinori; Nogami, Shuhei*; Hasegawa, Akira*; Abe, Hiroaki*; Iwai, Takeo*; et al.

no journal, , 

no abstracts in English

Oral presentation

Development of a large-area alpha imaging detector capable of measuring the detailed distribution of alpha contaminations on hands and feet

Morishita, Yuki; Higuchi, Mikio*; Kaneko, Junichi*; Kitagawa, Yuichi*; Akedo, Jun*; Soma, Mitsugu*; Matsui, Hiroaki*

no journal, , 

This paper describes the development of a large-area imaging detector capable of measuring the detailed distribution of alpha particles on hands and feet for use in entry/exit control monitors in decommissioning sites such as the Fukushima Daiichi Nuclear Power Plant. The detector was developed using a commercially available ZnS(Ag) scintillator and an electron multiplying CCD camera. The effectiveness of the detector was evaluated by measuring several types of radiation sources, and the results showed that it was possible to detect the position of alpha particles in a very short time, and contamination levels of up to 11 Bq/cm$$^{2}$$ could be visualized. The field of view of the detector was also checked, and it was confirmed that the setup had a field of view that could cover most of the hand and the sole of the shoe. This detector is expected to be useful for preventing internal uptake and decontamination.

13 (Records 1-13 displayed on this page)
  • 1