Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 56

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Result of seismic motion observation from ground surface to 500m depth at Mizunami Underground Research Laboratory and its detailed analysis

Matsui, Hiroya; Watanabe, Kazuhiko*; Mikake, Shinichiro; Niimi, Katsuyuki*; Kobayashi, Shinji*; Toguri, Satohito*

Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.293 - 298, 2020/01

Japan Atomic Energy Agency has been observed seismic motions induced by earthquakes, at ground surface, galleries at 100m, 300m and 500m depth of Mizunami underground research laboratory for over 10 years. The results suggested that the amplitude of the seismic motion decreases with depth as the previous study on crystalline rock at Kamaishi mine indicated. Detailed analysis on the observed seismic motions shows that the Fourier amplitude and the phase difference of the earthquake occurred near epicenter correspond with the one calculated by one-dimensional multiple reflection theory.

JAEA Reports

Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015); Development of design and construction planning and countermeasure technologies (Contract research)

Toguri, Satohito*; Kobayashi, Shinji*; Tsuji, Masakuni*; Yahagi, Ryoji*; Yamada, Toshiko*; Matsui, Hiroya; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

JAEA-Technology 2017-005, 43 Pages, 2017/03

JAEA-Technology-2017-005.pdf:4.4MB

The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. In FY2015, as a part of the important issues on the research program, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized.

Journal Articles

Post-grouting experiences for reducing groundwater inflow at 500 m depth of the Mizunami Underground Research Laboratory, Japan

Tsuji, Masakuni*; Kobayashi, Shinji*; Mikake, Shinichiro; Sato, Toshinori; Matsui, Hiroya

Procedia Engineering, 191, p.543 - 550, 2017/00

 Times Cited Count:11 Percentile:92.43(Mining & Mineral Processing)

This paper shows the application of two post-grouting works to a gallery at 500 m depth of Mizunami Underground Research Laboratory in Japan. Three new grouting concepts were applied to the post-grouting works; a new grout material, a new injection system, and a new post-grouting zone. As for a grout material, "durable liquid-type colloidal silica grout (CSG)" was applied to seal the narrow fractures. As for an injection system, "complex dynamic grouting method" was applied to improve the penetrability of the grout material. The grouting works were successful in reducing the abundant water inflow from the rock mass with many fractures.

Journal Articles

Post-grouting with colloidal silica at great depth of the Mizunami Underground Research Laboratory, Japan

Tsuji, Masakuni*; Kobayashi, Shinji*; Sato, Toshinori; Mikake, Shinichiro; Matsui, Hiroya

Proceedings of 8th Nordic Grouting Symposium, p.171 - 185, 2016/09

This paper presents the application of a durable liquid-type colloidal silica grout (CSG), to the great depth of the Mizunami Underground Research Laboratory (MIU). The CSG had been invented decades ago in Japan for the purpose of the ground improvement. A post-grouting experiment with the CSG carried out in 300 m depth of MIU confirmed its applicability and good durability at a great depth more than 3 years. Furthermore, a comparison study of applying the CSG between this experiment and a Swedish project indicated good applicability of the Swedish theoretical design to MIU. The CSG with the Swedish design were applied to the post-grouting campaign in a gallery at 500 m depth for further reducing water ingress and for developing the latest grouting methodology. The grouting was successful in reducing the abundant inflow from the rock with many fractures. The conductivity of the grouted rock mass of the latter fans is estimated to be lower than 10$$^{-9}$$ m/s.

JAEA Reports

Three-dimensional stress analysis of reflooding tunnel during submerging process using crack tensor model at Mizunami Underground Research Laboratory

Ozaki, Yusuke; Matsui, Hiroya; Kuwabara, Kazumichi; Tada, Hiroyuki*; Sakurai, Hideyuki*; Kumasaka, Hiroo*; Goke, Mitsuo*; Kobayashi, Shinji*

JAEA-Research 2016-007, 125 Pages, 2016/06

JAEA-Research-2016-007.pdf:34.66MB

In Mizunami Underground Research Laboratory (MIU), the stress analysis of fractured rock have been performed with crack tensor model. In MIU, a reflooding test is performed at 500m stage. In this study, stress analysis of rock during submerging process of the tunnel is performed by using crack tensor model. The deformation of the rock under different water levels in the tunnel is simulated. The stress condition by high pressure due to inflow of groundwater into tunnel is also estimated. These simulation are performed under assumption that groundwater does not permeate into rock for the estimation of maximum pressure acting on the rock. The stress analysis with consideration of permeation of groundwater into rock is also conducted for the estimation of stress condition after the diffusion of water pressure in tunnel. The results of these analyses lead the conclusion that the pressure of the rock reaches the groundwater pressure near the face of tunnel when the tunnel is submerged.

Journal Articles

Grouting experiment with colloidal silica at 300 m depth of the Mizunami URL

Kobayashi, Shinji*; Nobuto, Jun*; Sugiyama, Hirokazu*; Kusano, Takashi*; Tsuji, Masakuni*; Mikake, Shinichiro; Matsui, Hiroya

Proceedings of European Rock Mechanics Symposium (EUROCK 2012) (CD-ROM), 13 Pages, 2012/05

JAEA (Japan Atomic Energy Agency) has been conducting geoscientific research and development at underground research laboratory under construction, in crystalline rock at Mizunami, Gifu. Considering water treatment expense, the water inflow should be minimized. Although cement grout has been applied to reduce the inflow at 460 m depth at the MIU (Mizunami Underground Research Laboratory), water inflow through narrow fractures which cement grout cannot penetrate might be a problem at deeper underground. Colloidal silica grout, which is liquid-type grout, has high durability as well as good penetrability and is therefore tested at a depth of 300 m. The results indicated that liquid-type grout could sufficiently reduce the hydraulic conductivity of rock mass with less than 1 Lu. In the water pressure resistance test, the ultra-high-pressure packer was set in the pilot hole. The results indicated that liquid-type grout could keep sealing effect even under high water pressures over 9 MPa.

Journal Articles

Analysis and numerical simulation of seismic events recorded in the ventilation shaft at the Mizunami URL

Niimi, Katsuyuki*; Kobayashi, Shinji*; Nobuto, Jun*; Matsui, Hiroya; Yamamoto, Masaru

Proceedings of European Rock Mechanics Symposium (EUROCK 2012) (CD-ROM), 13 Pages, 2012/05

JAEA has been conducting geoscientific research and development at underground research laboratories under construction in Japan. In this study, frequency and wave propagation characteristics were analyzed using seismic records for six earthquakes obtained with the seismometers in URL. It was found that seismic motions were amplified from the deep underground to the shallow surface and that the wave propagation characteristics were different in NS and EW directions. It was also assumed that the recorded data of the seismometer on the ground might be influenced by aboveground structures. Then, numerical simulations using SHAKE, which is commonly used for seismic response analysis in Japan and had been applied to the earthquake resistance design in Phase I, were carried out to compare analytical results and observed records. The results showed that the calculated results agreed well with those observed when epicenters are close.

Journal Articles

Dosimetry for 110 keV electron beam processing

Seito, Hajime; Matsui, Shinjiro*; Hakoda, Teruyuki; Ishikawa, Masayoshi*; Haruyama, Yasuyuki; Kaneko, Hirohisa; Kimura, Jun*; Kojima, Takuji

Zairyo Gijutsu, 30(1), p.10 - 16, 2012/01

The dosimetry of a 110 keV electron beam (EB) irradiation field is studied using a calorimeter, film dosimeter, and Monte Carlo simulation. This is important base for dose control in practical processing to guarantee the process reproducibility and product reliability. The simulation results are validated on the measurement of the energy fluence obtained by the calorimeter at one position in the air plane at different distances from a beam exit window. The spatial dose distribution obtained from the simulation is compared to that obtained by the film dosimeter. They show good agreement within $$pm$$5.0%. The precision of $$pm$$5.0% is sufficient to control the surface modification of polymers and the development of semiconductor devices in practical radiation processing. These results suggest that film dosimetry results at just one position in the air plane are sufficient to determine the irradiation characteristics of the low energy EB, and to provide a base of quality control measures in practical radiation processing.

Journal Articles

Fabrication and tests of EF conductors for JT-60SA

Kizu, Kaname; Kashiwa, Yoshitoshi; Murakami, Haruyuki; Obana, Tetsuhiro*; Takahata, Kazuya*; Tsuchiya, Katsuhiko; Yoshida, Kiyoshi; Hamaguchi, Shinji*; Matsui, Kunihiro; Nakamura, Kazuya*; et al.

Fusion Engineering and Design, 86(6-8), p.1432 - 1435, 2011/10

 Times Cited Count:8 Percentile:53.23(Nuclear Science & Technology)

In JT-60SA, central solenoid (CS) and plasma equilibrium field (EF) coils are procured by Japan. EF coil conductors are NbTi cable-in-conduit (CIC) conductor. Delivered superconducting cables and jackets are fabricated into CIC conductors at the jacketing facility with the length of 680 m constructed in the Naka site of JAEA. The production of superconductors with 444 m in length for actual EF coils was started from March 2010. The measurements of superconducting performance like current sharing temperature (Tcs) were conducted prior to the mass production. The measured Tcs was agreed with the expectation values from strand values indicating that no degradation was happened by production process.

Journal Articles

Effect of the soft X-rays on highly hydrogenated diamond-like carbon films

Kanda, Kazuhiro*; Yokota, Kumiko*; Tagawa, Masahito*; Tode, Mayumi; Teraoka, Yuden; Matsui, Shinji*

Japanese Journal of Applied Physics, 50(5), p.055801_1 - 055801_3, 2011/05

Recently, the irradiation of soft X-ray synchrotron radiation (SR) to highly-hydrogenated diamond-like-carbon (H-DLC) films in vacuum results in the desorption of hydrogen and the increase of film density, hardness and refractive index. In this study, we investigated SR irradiation effects on the H-DLC with different hydrogen contents. The H-DLC thin films were deposited on an Si wafer with 200 nm thickness by an amplitude-modulated radio frequency plasma chemical vapor deposition method. The SR irradiation was carried out at NewSUBARU BL6. The SR has a continuous spectrum from IR to soft X-ray, which is lower than 1 keV. The hydrogen content dependence on SR dose was estimated using elastic recoil detection analysis (ERDA) and Rutherford backscattering (RBS) techniques. The hydrogen content was kept constant in the low-hydrogenated DLC film, while that in the high-hydrogenated DLC film decreased exponentially with soft X-ray dose.

Journal Articles

Effect of the soft X-rays on highly hydrogenated diamond-like carbon films

Kanda, Kazuhiro*; Yokota, Kumiko*; Tagawa, Masahito*; Tode, Mayumi; Teraoka, Yuden; Matsui, Shinji*

Japanese Journal of Applied Physics, 50(5), p.055801_1 - 055801_3, 2011/05

 Times Cited Count:11 Percentile:43.84(Physics, Applied)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2009

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.

JAEA-Review 2011-007, 145 Pages, 2011/03

JAEA-Review-2011-007.pdf:16.51MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.

JAEA Reports

Studies on planning and conducting for reducing water inflow due to underground construction in crystalline rock

Mikake, Shinichiro; Yamamoto, Masaru; Ikeda, Koki; Sugihara, Kozo; Takeuchi, Shinji; Hayano, Akira; Sato, Toshinori; Takeda, Shinichi; Ishii, Yoji; Ishida, Hideaki; et al.

JAEA-Technology 2010-026, 146 Pages, 2010/08

JAEA-Technology-2010-026.pdf:41.08MB
JAEA-Technology-2010-026-appendix(CD-ROM).zip:83.37MB

The Mizunami Underground Research Laboratory (MIU), one of the main facilities in Japan for research and development of the technology for high-level radioactive waste disposal, is under construction in Mizunami City. In planning the construction, it was necessary to get reliable information on the bedrock conditions, specifically the rock mass stability and hydrogeology. Therefore, borehole investigations were conducted before excavations started. The results indicated that large water inflow could be expected during the excavation around the Ventilation Shaft at GL-200m and GL-300m Access/Research Gallery. In order to reduce water inflow, pre-excavation grouting was conducted before excavation of shafts and research tunnels. Grouting is the injection of material such as cement into a rock mass to stabilize and seal the rock. This report describes the knowledge and lessons learned during the planning and conducting of pre-excavation grouting.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2010

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-029, 28 Pages, 2010/08

JAEA-Review-2010-029.pdf:3.43MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based investigation phase (Phase1), Construction phase (Phase2) and Operation phase (Phase3). The project is currently under the construction phase, and the operation phase starts in 2010. This document introduces the research and development activities planned for 2010 fiscal year plan based on the MIU master plan updated in 2010, (1) Investigation plan, (2) Construction plan, (3) Research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2008

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-014, 110 Pages, 2010/07

JAEA-Review-2010-014.pdf:27.34MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2008, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Studies on grouting performance in Mizunami Underground Research Laboratory (Contract research)

Kawamura, Hideki*; Ando, Kenichi*; Noda, Masaru*; Tanaka, Tatsuya*; Matsuda, Takeshi*; Fujii, Haruhiko*; Hashimoto, Shuji*; Ueda, Tadashi*; Matsui, Hiroya; Takeuchi, Shinji; et al.

JAEA-Technology 2009-081, 182 Pages, 2010/03

JAEA-Technology-2009-081.pdf:28.89MB

Grouting has practical importance for the reduction of groundwater inflow into excavations during construction of underground facilities. Considering the performance assessment of a radioactive waste repository, the performance of the engineered barrier system could be adversely affected by a high pH plume generated from grout. Therefore, a quantitative estimation of the effectiveness of grouting and grout material is essential. This study has been performed in the Mizunami URL being excavated in crystalline rock as a part of the Project for Grouting Technology Development for the Radioactive Waste Repository funded by METI, Japan. The aims were to evaluate the applicability of existing grouting technology and to develop methodology to determine the distribution of grout and change in hydraulic properties of the grouted rock volume. The target rock is the volume of rock around a planned refuge niche where the pre-excavation grouting was performed at 200-m depth from ground surface. After excavation of the refuge niche, ten boreholes were drilled and different kinds of investigations were carried out during and after drilling. The results were integrated and groundwater flow analysis of pre and post excavation grouting conditions were carried out to estimate quantitatively the effect of pre-excavation grouting. The results suggest that current pre-excavation grouting technology is effective for reduction of groundwater inflow into excavations and that hydraulic conductivity of the surrounding rock can be reduced by more than one order of magnitude.

Journal Articles

Current statues of phase II investigations, Mizunami Underground Research Laboratory (MIU) Project

Tsuruta, Tadahiko; Uchida, Masahiro; Hama, Katsuhiro; Matsui, Hiroya; Takeuchi, Shinji; Amano, Kenji; Takeuchi, Ryuji; Saegusa, Hiromitsu; Matsuoka, Toshiyuki; Mizuno, Takashi

Proceedings of 12th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM '09/DECOM '09) (CD-ROM), 8 Pages, 2009/10

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2009

Takeuchi, Shinji; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Amano, Kenji; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2009-017, 29 Pages, 2009/08

JAEA-Review-2009-017.pdf:3.69MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2009 fiscal year plan based on the MIU Master Plan updated in 2002, (1) Investigation Plan, (2) Construction Plan, (3) Research Collaboration Plan, etc.

Journal Articles

Studies of grouting performace in the Mizunami Underground Research Laboratory

Matsui, Hiroya; Takeuchi, Shinji; Sugihara, Kozo; Yui, Mikazu

Proceedings of International Symposium on Rock Mechanics "Rock Characterization, Modelling and Engineering Design Methods" (SINOROCK 2009) (CD-ROM), p.953 - 957, 2009/05

Grouting has practical importance for the reduction of groundwater inflow for the construction of underground facilities. Considering the performance assessment aspects of a radioactive waste repository, the performance of engineered barrier system could be adversely affected by high pH plume generated from grout using material such as ordinary Portland cement. Therefore, a quantitative estimation of the effectiveness of grouting and grout material is essential. Study of grouting performance was carried out in Mizunami URL excavated in crystalline rock. The target volume for the investigation is the rock surrounding a refuge niche where the pre-excavation grouting was performed. Ten investigation boreholes were drilled and several kinds of investigations were carried out. The groundwater flow analysis was performed to estimate the effect of grouting quantitatively. The results suggested that the existing grouting technology is effective to reduce groundwater inflow into drift and the hydraulic conductivity in surrounding rock may decrease more than one order of magnitude before grouting.

JAEA Reports

Countermeasures planned for reducing water inflow into deep shafts at the Mizunami Underground Research Laboratory (Research for post-excavation grouting)

Kuji, Masayoshi*; Matsui, Hiroya; Hara, Masato; Minamide, Masashi*; Mikake, Shinichiro; Takeuchi, Shinji; Sato, Toshinori*; Asai, Hideaki

JAEA-Research 2008-095, 54 Pages, 2009/01

JAEA-Research-2008-095.pdf:13.14MB

A large amount of water inflow is frequently generated during the excavation of an underground cavern, such as road and railway tunnels, underground electric facilities etc. The reduction of water inflow is sometimes quite important for the reduction of cost for the water treatment and pumping during the construction of an underground cavern. The Mizunami Underground Research Laboratory (MIU) is currently being constructed by Japan Atomic Energy Agency. During its excavation, a large amount of water inflow into the shafts has been increasing and affecting the project progress. Therefore, a field experiment of post-excavation grouting around the Ventilation Shaft in a sedimentary formation carried out to confirm the effect of existing grouting technology for sedimentary formations in MIU project. The result shows that the applied methods in this field experiment are effective to prevent water inflow. This report describes the summary of the field experiment and the knowledge obtained through the experiment.

56 (Records 1-20 displayed on this page)