Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tsuchikawa, Yusuke; Kai, Tetsuya; Parker, J.*; Matsumoto, Yoshihiro*; Shinohara, Takenao
Scientific Reports (Internet), 15, p.7687_1 - 7687_8, 2025/03
Times Cited Count:1A neutron resonance absorption imaging technique to visualize two-dimensional distributions with element discrimination has been developed at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. We measured neutron transmission spectra from 1 eV to 100 keV while rotating a sample containing iron, zirconium, nickel, molybdenum, and aluminum rods. The distributions of hafnium (impurity of zirconium) and molybdenum were clearly obtained by a straightforward analysis using the most prominent resonances. Then an analysis using multiple resonances of each element simultaneously was performed finding that the accuracy of elemental identification was improved, and iron and nickel distributions became clearer. However, these analysis methods sometimes have difficulties in the case of overlapping materials since a resonance shape can be deteriorated by those of other materials. Such an example was demonstrated with the case of iron and nickel. To overcome the issue and aiming for further improvement, we proposed a method to fit the transmission spectrum in a wide range assuming the existence of possible elements, successfully visualizing both the distributions of the sample metals and those of hafnium and manganese (impurities of zirconium and iron). The newly introduced analysis technique will contribute to the establishment of a standard analytical procedure for general users of the facility.
Takyu, Sodai*; Matsumoto, Kenichiro*; Hirade, Tetsuya; Nishikido, Fumihiko*; Akamatsu, Go*; Tashima, Hideaki*; Takahashi, Miwako*; Yamaya, Taiga*
Japanese Journal of Applied Physics, 63(8), p.086003_1 - 086003_8, 2024/08
Times Cited Count:1 Percentile:40.97(Physics, Applied)Positrons and electrons sometimes exist as a bound state, positronium (Ps), in living organisms. The triplet Ps (ortho-Ps) annihilation time represents the ortho-Ps pick-off annihilation lifetime, and it varies depending on the surrounding electron density. The ortho-Ps lifetime may add new biological information to PET scan information. In order to discuss the feasibility of quantifying (free) radicals in vivo by the ortho-Ps lifetime, we used a clinical PET system to make ortho-Ps lifetime measurements in aqueous solutions containing radicals. The results suggested that differences in radical concentrations in aqueous solutions of the order of a few mM could be quantified by the ortho-Ps lifetime if the counting statistic of the positron annihilation events was more than 10 events. This concentration was higher than the radical concentration generated in the physiological functions of living organisms.
Kimura, Yoshiki; Matsumoto, Tetsuya*; Yamaguchi, Tomoki
Journal of Radioanalytical and Nuclear Chemistry, 333(7), p.3541 - 3551, 2024/07
Times Cited Count:0 Percentile:0.00(Chemistry, Analytical)Vauchy, R.; Matsumoto, Taku; Hirooka, Shun; Uno, Hiroki*; Tamura, Tetsuya*; Arima, Tatsumi*; Inagaki, Yaohiro*; Idemitsu, Kazuya*; Nakamura, Hiroki; Machida, Masahiko; et al.
Journal of Nuclear Materials, 588, p.154786_1 - 154786_13, 2024/01
Times Cited Count:6 Percentile:85.99(Materials Science, Multidisciplinary)Matsumoto, Yuji*; Haga, Yoshinori; Yamamoto, Etsuji; Takeuchi, Tetsuya*; Miyake, Atsushi*; Tokunaga, Masashi*
Journal of the Physical Society of Japan, 90(7), p.074707_1 - 074707_6, 2021/07
Times Cited Count:2 Percentile:11.79(Physics, Multidisciplinary)Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken
JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03
Tsuchikawa, Yusuke; Abe, Yuta; Oishi, Yuji*; Kai, Tetsuya; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Kimura, Atsushi; Nakamura, Shoji; Harada, Masahide; et al.
JPS Conference Proceedings (Internet), 33, p.011074_1 - 011074_6, 2021/03
In the decommissioning of the Fukushima-Daiichi (1F) Nuclear Power Plant, it is essential to understand characteristics of the melted core materials. The estimation of boride in the real debris is of great importance to develop safe debris removal plans. Hence, it is required to investigate the amount of boron in the melted core materials with nondestructive methods. Prompt gamma-ray activation analysis (PGAA) is one of the useful techniques to determine the amount of borides by means of the 478 keV prompt gamma-ray from neutron absorption reaction of boron. Moreover, it is well known that the width of the 478 keV gamma-ray peak is typically broadened due to the Doppler effect. The degree of the broadening is affected by coexisting materials, and can be recognized by the width of the prompt gamma-ray peak. As a feasibility study, the prompt gamma-ray from boride samples were measured using the ANNRI, NOBORU, and RADEN beamlines at the Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Complex (J-PARC).
Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08
Parker, J. D.*; Harada, Masahide; Hayashida, Hirotoshi*; Hiroi, Kosuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Nakatani, Takeshi; Oikawa, Kenichi; Segawa, Mariko; Shinohara, Takenao; et al.
Materials Research Proceedings, Vol.15, p.102 - 107, 2020/05
Shinohara, Takenao; Kai, Tetsuya; Oikawa, Kenichi; Nakatani, Takeshi; Segawa, Mariko; Hiroi, Kosuke; Su, Y. H.; Oi, Motoki; Harada, Masahide; Iikura, Hiroshi; et al.
Review of Scientific Instruments, 91(4), p.043302_1 - 043302_20, 2020/04
Times Cited Count:77 Percentile:97.23(Instruments & Instrumentation)Kai, Tetsuya; Shinohara, Takenao; Matsumoto, Yoshihiro*
Kensa Gijutsu, 25(2), p.1 - 5, 2020/02
no abstracts in English
Kai, Tetsuya; Hiroi, Kosuke; Su, Y. H.; Segawa, Mariko; Shinohara, Takenao; Matsumoto, Yoshihiro*; Parker, J. D.*; Hayashida, Hirotoshi*; Oikawa, Kenichi
Materials Research Proceedings, Vol.15, p.149 - 153, 2020/02
Oikawa, Kenichi; Kiyanagi, Yoshiaki*; Sato, Hirotaka*; Omae, Kazuma*; Pham, A.*; Watanabe, Kenichi*; Matsumoto, Yoshihiro*; Shinohara, Takenao; Kai, Tetsuya; Harjo, S.; et al.
Materials Research Proceedings, Vol.15, p.207 - 213, 2020/02
Shoji, Eita*; Isogai, Shosei*; Suzuki, Rikuto*; Kubo, Masaki*; Tsukada, Takao*; Kai, Tetsuya; Shinohara, Takenao; Matsumoto, Yoshihiro*; Fukuyama, Hiroyuki*
Scripta Materialia, 175, p.29 - 32, 2020/01
Times Cited Count:24 Percentile:75.72(Nanoscience & Nanotechnology)Shimizu, Kazuyuki*; Hayashida, Hirotoshi*; Toda, Hiroyuki*; Kai, Tetsuya; Matsumoto, Yoshihiro*; Matsumoto, Yoshihisa*
Nihon Kinzoku Gakkai-Shi, 83(11), p.434 - 440, 2019/11
Times Cited Count:1 Percentile:4.98(Metallurgy & Metallurgical Engineering)Oikawa, Kenichi; Su, Y. H.; Kiyanagi, Ryoji; Kawasaki, Takuro; Shinohara, Takenao; Kai, Tetsuya; Hiroi, Kosuke; Harjo, S.; Parker, J. D.*; Matsumoto, Yoshihiro*; et al.
Physica B; Condensed Matter, 551, p.436 - 442, 2018/12
Times Cited Count:6 Percentile:26.66(Physics, Condensed Matter)Kai, Tetsuya; Sato, Setsuo*; Hiroi, Kosuke; Su, Y. H.; Segawa, Mariko; Parker, J. D.*; Matsumoto, Yoshihiro*; Hayashida, Hirotoshi*; Shinohara, Takenao; Oikawa, Kenichi; et al.
Physica B; Condensed Matter, 551, p.496 - 500, 2018/12
Times Cited Count:4 Percentile:18.04(Physics, Condensed Matter)Segawa, Mariko; Oikawa, Kenichi; Kai, Tetsuya; Shinohara, Takenao; Hayashida, Hirotoshi*; Matsumoto, Yoshihiro*; Parker, J. D.*; Nakatani, Takeshi; Hiroi, Kosuke; Su, Y. H.; et al.
JPS Conference Proceedings (Internet), 22, p.011028_1 - 011028_8, 2018/11
Koyama, Taku*; Ueno, Kazuki*; Sekine, Mariko*; Matsumoto, Yoshihiro*; Kai, Tetsuya; Shinohara, Takenao; Iikura, Hiroshi; Suzuki, Hiroshi; Kanematsu, Manabu*
Materials Research Proceedings, Vol.4, p.155 - 160, 2018/05
Times Cited Count:0 Percentile:0.00(Materials Science, Characterization & Testing)Kai, Tetsuya; Hiroi, Kosuke; Su, Y. H.; Shinohara, Takenao; Parker, J. D.*; Matsumoto, Yoshihiro*; Hayashida, Hirotoshi*; Segawa, Mariko; Nakatani, Takeshi; Oikawa, Kenichi; et al.
Physics Procedia, 88, p.306 - 313, 2017/06
Times Cited Count:7 Percentile:92.02(Instruments & Instrumentation)