Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 242

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron resonance absorption imaging fully utilizing neutron energies from 1 eV to 100 keV

Tsuchikawa, Yusuke; Kai, Tetsuya; Parker, J.*; Matsumoto, Yoshihiro*; Shinohara, Takenao

Scientific Reports (Internet), 15, p.7687_1 - 7687_8, 2025/03

A neutron resonance absorption imaging technique to visualize two-dimensional distributions with element discrimination has been developed at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. We measured neutron transmission spectra from 1 eV to 100 keV while rotating a sample containing iron, zirconium, nickel, molybdenum, and aluminum rods. The distributions of hafnium (impurity of zirconium) and molybdenum were clearly obtained by a straightforward analysis using the most prominent resonances. Then an analysis using multiple resonances of each element simultaneously was performed finding that the accuracy of elemental identification was improved, and iron and nickel distributions became clearer. However, these analysis methods sometimes have difficulties in the case of overlapping materials since a resonance shape can be deteriorated by those of other materials. Such an example was demonstrated with the case of iron and nickel. To overcome the issue and aiming for further improvement, we proposed a method to fit the transmission spectrum in a wide range assuming the existence of possible elements, successfully visualizing both the distributions of the sample metals and those of hafnium and manganese (impurities of zirconium and iron). The newly introduced analysis technique will contribute to the establishment of a standard analytical procedure for general users of the facility.

Journal Articles

Neutron imaging for automotive polymer electrolyte fuel cells during rapid cold starts

Yoshimune, Wataru*; Higuchi, Yuki*; Song, F.; Hibi, Shogo*; Matsumoto, Yoshihiro*; Hayashida, Hirotoshi*; Nozaki, Hiroshi*; Shinohara, Takenao; Kato, Satoru*

Physical Chemistry Chemical Physics, 26(47), p.29466 - 29474, 2024/11

 Times Cited Count:1 Percentile:47.21(Chemistry, Physical)

Journal Articles

Redifining RADEN's high-resolution neutron imaging capabilities

Sans-Planell, O.*; Shinohara, Takenao; Grazzi, F.*; Cantini, F.*; Su, Y. H.; Matsumoto, Yoshihiro*; Parker, J. D.*; Manke, I.*

Review of Scientific Instruments, 95(11), p.113702_1 - 113702_5, 2024/11

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

Journal Articles

Energy-resolved neutron imaging study of a Japanese sword signed by Bishu Osafune Norimitsu

Oikawa, Kenichi; Matsumoto, Yoshihiro*; Watanabe, Kenichi*; Sato, Hirotaka*; Parker, J. D.*; Shinohara, Takenao; Kiyanagi, Yoshiaki*

Scientific Reports (Internet), 14, p.27990_1 - 27990_11, 2024/11

 Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)

Journal Articles

Nondestructive analysis of internal crystallographic structures of Japanese swords using neutron imaging

Matsumoto, Yoshihiro*; Oikawa, Kenichi; Watanabe, Kenichi*; Sato, Hirotaka*; Parker, J. D.*; Shinohara, Takenao; Kiyanagi, Yoshiaki*

Journal of Archaeological Science; Reports, 58, p.104729_1 - 104729_10, 2024/10

Journal Articles

Experimental visualization of water/ice phase distribution at cold start for practical-sized polymer electrolyte fuel cells

Higuchi, Yuki*; Yoshimune, Wataru*; Kato, Satoru*; Hibi, Shogo*; Setoyama, Daigo*; Isegawa, Kazuhisa*; Matsumoto, Yoshihiro*; Hayashida, Hirotoshi*; Nozaki, Hiroshi*; Harada, Masashi*; et al.

Communications Engineering (Internet), 3, p.33_1 - 33_7, 2024/02

Journal Articles

In situ neutron imaging of lithium-ion batteries during heating to thermal runaway

Nozaki, Hiroshi*; Kondo, Hiroki*; Shinohara, Takenao; Setoyama, Daigo*; Matsumoto, Yoshihiro*; Sasaki, Tsuyoshi*; Isegawa, Kazuhisa*; Hayashida, Hirotoshi*

Scientific Reports (Internet), 13, p.22082_1 - 22082_8, 2023/12

 Times Cited Count:3 Percentile:25.86(Multidisciplinary Sciences)

Journal Articles

Corrigendum to "Visualization of the working fluid in a flat-plate pulsating heat pipe by neutron radiography" [International Journal of Heat and Mass Transfer 185 (2022) 122336]

Yasuda, Yosuke*; Matsumoto, Yoshihiro*; Shinohara, Takenao; Nabeshima, Fumika*; Horiuchi, Keisuke*; Nagai, Hiroki*

International Journal of Heat and Mass Transfer, 213, p.124291_1 - 124291_2, 2023/10

 Times Cited Count:1 Percentile:91.55(Thermodynamics)

Journal Articles

3D water management in polymer electrolyte fuel cells toward fuel cell electric vehicles

Yoshimune, Wataru*; Higuchi, Yuki*; Kato, Akihiko*; Hibi, Shogo*; Yamaguchi, Satoshi*; Matsumoto, Yoshihiro*; Hayashida, Hirotoshi*; Nozaki, Hiroshi*; Shinohara, Takenao; Kato, Satoru*

ACS Energy Letters (Internet), 8(8), p.3485 - 3487, 2023/08

 Times Cited Count:14 Percentile:83.21(Chemistry, Physical)

Journal Articles

Fast phase differentiation between liquid-water and ice by pulsed neutron imaging with gated image intensifier

Isegawa, Kazuhisa; Setoyama, Daigo*; Higuchi, Yuki*; Matsumoto, Yoshihiro*; Nagai, Yasutaka*; Shinohara, Takenao

Nuclear Instruments and Methods in Physics Research A, 1040, p.167260_1 - 167260_10, 2022/10

 Times Cited Count:5 Percentile:63.07(Instruments & Instrumentation)

Journal Articles

Catalog of gamma-ray glows during four winter seasons in Japan

Wada, Yuki*; Matsumoto, Takahiro*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Furuta, Yoshihiro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Okada, Go*; Nanto, Hidehito*; et al.

Physical Review Research (Internet), 3(4), p.043117_1 - 043117_31, 2021/12

Journal Articles

Visualization of the boron distribution in core material melting and relocation specimen by neutron energy resolving method

Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken

JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03

Journal Articles

Feasibility study of PGAA for boride identification in simulated melted core materials

Tsuchikawa, Yusuke; Abe, Yuta; Oishi, Yuji*; Kai, Tetsuya; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Kimura, Atsushi; Nakamura, Shoji; Harada, Masahide; et al.

JPS Conference Proceedings (Internet), 33, p.011074_1 - 011074_6, 2021/03

In the decommissioning of the Fukushima-Daiichi (1F) Nuclear Power Plant, it is essential to understand characteristics of the melted core materials. The estimation of boride in the real debris is of great importance to develop safe debris removal plans. Hence, it is required to investigate the amount of boron in the melted core materials with nondestructive methods. Prompt gamma-ray activation analysis (PGAA) is one of the useful techniques to determine the amount of borides by means of the 478 keV prompt gamma-ray from neutron absorption reaction of boron. Moreover, it is well known that the width of the 478 keV gamma-ray peak is typically broadened due to the Doppler effect. The degree of the broadening is affected by coexisting materials, and can be recognized by the width of the prompt gamma-ray peak. As a feasibility study, the prompt gamma-ray from boride samples were measured using the ANNRI, NOBORU, and RADEN beamlines at the Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Complex (J-PARC).

Journal Articles

Pulsed neutron imaging for differentiation of ice and liquid water towards fuel cell vehicle applications

Higuchi, Yuki*; Setoyama, Daigo*; Isegawa, Kazuhisa; Tsuchikawa, Yusuke; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Nagai, Yasutaka*

Physical Chemistry Chemical Physics, 23(2), p.1062 - 1071, 2021/01

 Times Cited Count:11 Percentile:62.91(Chemistry, Physical)

This study is the first report on liquid water and ice imaging conducted at a pulsed spallation neutron source facility. Neutron imaging can be utilised to visualise the water distribution inside polymer electrolyte fuel cells (PEFCs). Particularly, energy-resolved neutron imaging is a methodology capable of distinguishing between liquid water and ice, and is effective for investigating ice formation in PEFCs operating in a subfreezing environment. The distinction principle is based on the fact that the cross sections of liquid water and ice differ from each other at low neutron energies. In order to quantitatively observe transient freezing and thawing phenomena in a multiphase mixture (gas/liquid/solid) within real PEFCs with high spatial resolution, a pulsed neutron beam with both high intensity and wide energy range is most appropriate. In the validation study of the present work, we used water sealed in narrow capillary tubes to simulate the flow channels of a PEFC, and a pulsed neutron beam was applied to distinguish ice, liquid water and super-cooled water, and to clarify freezing and thawing phenomena of the water within the capillary tubes. Moreover, we have enabled the observation of liquid water/ice distributions in a large field of view (300 mm $$times$$ 300 mm) by manufacturing a sub-zero environment chamber that can be cooled down to -30$$^{circ}$$C, as a step towards ${it in situ}$ visualisation of full-size fuel cells.

Journal Articles

Thundercloud project; Exploring high-energy phenomena in thundercloud and lightning

Yuasa, Takayuki*; Wada, Yuki*; Enoto, Teruaki*; Furuta, Yoshihiro; Tsuchiya, Harufumi; Hisadomi, Shohei*; Tsuji, Yuna*; Okuda, Kazufumi*; Matsumoto, Takahiro*; Nakazawa, Kazuhiro*; et al.

Progress of Theoretical and Experimental Physics (Internet), 2020(10), p.103H01_1 - 103H01_27, 2020/10

 Times Cited Count:15 Percentile:69.18(Physics, Multidisciplinary)

Journal Articles

Development of three-dimensional distribution visualization technology for boron using energy resolved neutron-imaging system (RADEN)

Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

Journal Articles

Development of event-type neutron imaging detectors at the energy-resolved neutron imaging system RADEN at J-PARC

Parker, J. D.*; Harada, Masahide; Hayashida, Hirotoshi*; Hiroi, Kosuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Nakatani, Takeshi; Oikawa, Kenichi; Segawa, Mariko; Shinohara, Takenao; et al.

Materials Research Proceedings, Vol.15, p.102 - 107, 2020/05

Journal Articles

The Energy-resolved neutron imaging system, RADEN

Shinohara, Takenao; Kai, Tetsuya; Oikawa, Kenichi; Nakatani, Takeshi; Segawa, Mariko; Hiroi, Kosuke; Su, Y. H.; Oi, Motoki; Harada, Masahide; Iikura, Hiroshi; et al.

Review of Scientific Instruments, 91(4), p.043302_1 - 043302_20, 2020/04

AA2019-0737.pdf:18.65MB

 Times Cited Count:74 Percentile:97.28(Instruments & Instrumentation)

Journal Articles

Applications of the energy-resolved neutron imaging system, RADEN

Kai, Tetsuya; Shinohara, Takenao; Matsumoto, Yoshihiro*

Kensa Gijutsu, 25(2), p.1 - 5, 2020/02

no abstracts in English

Journal Articles

Pulsed neutron imaging based crystallographic structure study of a Japanese sword made by Sukemasa in the Muromachi period

Oikawa, Kenichi; Kiyanagi, Yoshiaki*; Sato, Hirotaka*; Omae, Kazuma*; Pham, A.*; Watanabe, Kenichi*; Matsumoto, Yoshihiro*; Shinohara, Takenao; Kai, Tetsuya; Harjo, S.; et al.

Materials Research Proceedings, Vol.15, p.207 - 213, 2020/02

242 (Records 1-20 displayed on this page)