Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Laser heating induced spatial homogenization of phase separated Na$$_{2}$$O-B$$_{2}$$O$$_{3}$$-SiO$$_{2}$$ glass plate with bearing NiO for heat center and structural probe

Tomita, Kana*; Kishi, Tetsuo*; Matsumura, Daiju; Yano, Tetsuji*

Journal of Non-Crystalline Solids, 597, p.121891_1 - 121891_10, 2022/12

 Times Cited Count:1 Percentile:16.1(Materials Science, Ceramics)

Journal Articles

Structural significance of nickel sites in aluminosilicate glasses

Kado, Rikiya*; Kishi, Tetsuo*; Lelong, G.*; Galoisy, L.*; Matsumura, Daiju; Calas, G.*; Yano, Tetsuji*

Journal of Non-Crystalline Solids, 539, p.120070_1 - 120070_8, 2020/07

 Times Cited Count:5 Percentile:29.52(Materials Science, Ceramics)

Journal Articles

Uranium-based TRU multi-recycling with thermal neutron HTGR to reduce environmental burden and threat of nuclear proliferation

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi; Yan, X.; Nishihara, Tetsuo; Tsubata, Yasuhiro; Matsumura, Tatsuro

Journal of Nuclear Science and Technology, 55(11), p.1275 - 1290, 2018/11

AA2017-0752.pdf:1.25MB

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To reduce environmental burden and thread of nuclear proliferation, multi-recycling fuel cycle with High Temperature Gas-cooled Reactor (HTGR) has been investigated. Those problems are solved by incinerating TRans Uranium (TRU) nuclides, which is composed of plutonium and Minor Actinoide (MA), and there is concept to realize TRU incineration by multi-recycling with Fast Breeder Reactor (FBR). In this study, multi-recycling is realized even with thermal reactor by feeding fissile uranium from outside of the fuel cycle instead of breeding fissile nuclide. In this fuel cycle, recovered uranium by reprocessing and natural uranium are enriched and mixed with recovered TRU by reprocessing and partitioning to fabricate fresh fuels. The fuel cycle was designed for a Gas Turbine High Temperature Reactor (GTHTR300), whose thermal power is 600 MW, including conceptual design of uranium enrichment facility. Reprocessing is assumed as existing Plutonium Uranium Redox EXtraction (PUREX) with four-group partitioning technology. As a result, it was found that the TRU nuclides excluding neptunium can be recycled by the proposed cycle. The duration of potential toxicity decaying to natural uranium level can be reduced to approximately 300 years, and the footprint of repository for High Level Waste (HLW) can be reduced by 99.7% compared with GTHTR300 using existing reprocessing and disposal technology. Suppress plutonium is not generated from this cycle. Moreover, incineration of TRU from Light Water Reactor (LWR) cycle can be performed in this cycle.

Journal Articles

Optimization of disposal method and scenario to reduce high level waste volume and repository footprint for HTGR

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi; Nishihara, Tetsuo; Tsubata, Yasuhiro; Matsumura, Tatsuro

Annals of Nuclear Energy, 116, p.224 - 234, 2018/06

AA2017-0381.pdf:0.87MB

 Times Cited Count:1 Percentile:21.23(Nuclear Science & Technology)

Optimization of disposal method and scenario to reduce volume of High Level Waste (HLW) and the footprint in a geological repository for High Temperature Gas-cooled Reactor (HTGR) has been performed. It was found that HTGR has great advantages to reducing HLW volume and its footprint, which are high burn-up, high thermal efficiency and pin-in-block type fuel, compared with those of LWR and has potential to reduce those more in the previous study. In this study, the scenario is optimized, and the geological repository layout is designed with the horizontal emplacement based on the KBS-3H concept instead of the vertical emplacement based on KBS-3V concept employed in the previous study. As a result, for direct disposal, the repository footprint can be reduced by 20 % by employing the horizontal without change of the scenario. By extending 40 years for cooling time before disposal, the footprint can be reduced by 50 %. For disposal with reprocessing, the number of canister generation can be reduced by 20 % by extending cooling time of 1.5 years between the discharge and reprocessing. The footprint per electricity generation can be reduced by 80 % by extending 40 years before disposal. Moreover, by employing four-group partitioning technology without transmutation, the footprint can be reduced by 90 % with cooling time of 150 years.

Journal Articles

Development of the 4S and related technologies, 7; Summary of the FCA XXIII experiment analyses towards evaluation of prediction accuracies for the 4S core characteristics

Ueda, Nobuyuki*; Fukushima, Masahiro; Okajima, Shigeaki; Takeda, Toshikazu*; Kitada, Takanori*; Nauchi, Yasushi*; Kinoshita, Izumi*; Matsumura, Tetsuo*

Proceedings of 2009 International Congress on Advances in Nuclear Power Plants (ICAPP '09) (CD-ROM), p.9493_1 - 9493_9, 2009/05

A series of critical experiments were carried out in the JAEA fast critical facility (FCA) named FCA XXIII cores with placing emphases on the reflector reactivity worth and the sodium void reactivity which are especially important from the view point of safety features of the 4S. The analyses of those physics mockup experiments have been carried out by the neutron transport calculation methods with continuous energy Monte Carlo code MVP and 70 energy-group discrete ordinate P0-S8 transport code DANTSYS using libraries processed from JENDL-3.3 data file. The results showed that combination of the stochastic and deterministic transport calculation methods (Monte Carlo and Sn) provided good prediction bases for criticality, reflector worth, sodium void reactivity, reaction rate ratios and absorber reactivity worth for the 4S nuclear design.

Journal Articles

Steps and role of reactor physics research; Meaning and the future of critical experiments

Matsumura, Tetsuo*; Matsuura, Shojiro*; Mori, Takamasa

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 51(4), p.250 - 253, 2009/04

no abstracts in English

Journal Articles

Growth of ferroelectric bismuth lanthanum nickel titanate thin films by RF magnetron sputtering

Kobune, Masafumi*; Fukushima, Koji*; Yamaji, Toru*; Tada, Hideto*; Yazawa, Tetsuo*; Fujisawa, Hironori*; Shimizu, Masaru*; Nishihata, Yasuo; Matsumura, Daiju; Mizuki, Junichiro; et al.

Journal of Applied Physics, 101(7), p.074110_1 - 074110_6, 2007/04

 Times Cited Count:8 Percentile:33.33(Physics, Applied)

no abstracts in English

JAEA Reports

Study on the prediction accuracy of nuclide generation and depletion with JENDL

Okumura, Keisuke; Oki, Shigeo*; Yamamoto, Munenari*; Matsumoto, Hideki*; Ando, Yoshihira*; Tsujimoto, Kazufumi; Sasahara, Akihiro*; Katakura, Junichi; Matsumura, Tetsuo*; Aoyama, Takafumi*; et al.

JAERI-Research 2004-025, 154 Pages, 2005/01

JAERI-Research-2004-025.pdf:19.46MB

This report summarizes the activity (FY2000-2003) of Working Group (WG) on Evaluation of Nuclide Generation and Depletion under Subcommittee on Nuclear Fuel Cycle of Japanese Nuclear Data Committee. In the WG, analyses of Post Irradiation Examinations have been carried out for UO$$_{2}$$ and MOX fuels irradiated in PWRs, BWRs and FBRs, and for actinide samples irradiated in fast reactors, by using ORIGEN or more detailed calculation codes with their libraries based on JENDL-3.2, JENDL-3.3 and other foreign nuclear data files. From these results, current prediction accuracy and problems for evaluation of nuclide generation and depletion are discussed. Furthermore, this report covers other products of our activity; development of the ORIGEN libraries for PWR, BWR and FBR based on JENDL-3.3, study on introduction of neutron spectrum index to ORIGEN calculations, and results of questionnaire survey on desirable accuracy of ORIGEN calculations.

Oral presentation

SPring-8 utilization research towards the technical development for Fukushima environmental recovery

Yaita, Tsuyoshi; Shiwaku, Hideaki; Kobayashi, Toru; Awual, M. R.; Suzuki, Shinichi; Motokawa, Ryuhei; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Yoshigoe, Akitaka; et al.

no journal, , 

no abstracts in English

Oral presentation

Realization development of the flexible waste management system for MA P&T Technology, 1; Selection of the realization method and R&D plan

Suzuki, Akihiro*; Mizusako, Fumiki*; Inagaki, Yaohiro*; Arima, Tatsumi*; Fukasawa, Tetsuo*; Hoshino, Kuniyoshi*; Muroya, Yusa*; Matsumura, Tatsuro

no journal, , 

no abstracts in English

Oral presentation

Realization development of the flexible waste management system for MA P&T technology, 27; Selection of HLW granule calcination temperature for the efficient FWM system

Suzuki, Akihiro*; Endo, Yoichi*; Fukasawa, Tetsuo*; Muroya, Yusa*; Matsumura, Tatsuro; Inagaki, Yaohiro*; Arima, Tatsumi*

no journal, , 

no abstracts in English

Oral presentation

Establishment of characterization method for small fuel debris using the world's first isotope micro imaging apparatus, 4; Development of resonance ionization scheme for highly sensitive and accurate isotope analysis

Iwata, Yoshihiro; Miyabe, Masabumi; Wakaida, Ikuo; Yoshimura, Shoki*; Matsumura, Tamaki*; Morita, Masato*; Sakamoto, Tetsuo*

no journal, , 

Information on the elemental and isotopic compositions of fuel debris is essential for the decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station. In this study, we have developed a double-resonance ionization scheme for highly sensitive and accurate isotope analysis of neodymium (Nd), which is a burnup indicator.

12 (Records 1-12 displayed on this page)
  • 1