Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakada, Akira; Nakano, Masanao; Kanai, Katsuta; Seya, Natsumi; Nishimura, Shusaku; Nemoto, Masashi; Tobita, Keiji; Futagawa, Kazuo; Yamada, Ryohei; Uchiyama, Rei; et al.
JAEA-Review 2021-062, 163 Pages, 2022/02
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2020 to March 2021. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.
Chudo, Hiroyuki; Imai, Masaki; Matsuo, Mamoru; Maekawa, Sadamichi; Saito, Eiji
Journal of the Physical Society of Japan, 90(8), p.081003_1 - 081003_11, 2021/08
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Chudo, Hiroyuki; Matsuo, Mamoru*; Maekawa, Sadamichi*; Saito, Eiji
Physical Review B, 103(17), p.174308_1 - 174308_10, 2021/05
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Seya, Natsumi; Nishimura, Shusaku; Hosomi, Kenji; Nagaoka, Mika; Yokoyama, Hiroya; Matsubara, Natsumi; et al.
JAEA-Review 2020-069, 163 Pages, 2021/02
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2019 to March 2020. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.
Imai, Masaki; Chudo, Hiroyuki; Matsuo, Mamoru; Maekawa, Sadamichi; Saito, Eiji
Physical Review B, 102(1), p.014407_1 - 014407_5, 2020/07
Times Cited Count:4 Percentile:68.88(Materials Science, Multidisciplinary)Takahashi, Ryo*; Chudo, Hiroyuki; Matsuo, Mamoru; Harii, Kazuya*; Onuma, Yuichi*; Maekawa, Sadamichi; Saito, Eiji
Nature Communications (Internet), 11, p.3009_1 - 3009_6, 2020/06
Times Cited Count:4 Percentile:63.95(Multidisciplinary Sciences)Harii, Kazuya; Seo, Y.-J.*; Tsutsumi, Yasumasa*; Chudo, Hiroyuki; Oyanagi, Koichi*; Matsuo, Mamoru; Shiomi, Yuki*; Ono, Takahito*; Maekawa, Sadamichi; Saito, Eiji
Nature Communications (Internet), 10(1), p.2616_1 - 2616_5, 2019/06
Times Cited Count:14 Percentile:83.38(Multidisciplinary Sciences)Matsuo, Eiji*; Sasa, Kyohei*; Koyama, Kazuya*; Yamano, Hidemasa; Kubo, Shigenobu; Hourcade, E.*; Bertrand, F.*; Marie, N.*; Bachrata, A.*; Dirat, J. F.*
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05
Discharged molten-fuel from the core during Core Disruptive Accident (CDA) could become solidified particle debris by fuel-coolant interaction in the lower sodium plenum, and then the debris could form a bed on a core catcher located at the bottom of the reactor vessel. Coolability evaluations for the debris bed are necessary for the design of the core catcher. The purpose of this study is to evaluate the coolability of the debris bed on the core catcher for the ASTRID design. For this purpose, as a first step, the coolability calculations of the debris beds formed both in short term and later phase have been performed by modeling only the debris bed itself. Thus, details of core catcher design and decay heat removal system are not described in this paper. In all the calculations, coolant temperature around the debris bed is a parameter. The calculation tool is the debris bed module implemented into a one-dimensional plant dynamics code, Super-COPD. The evaluations have shown that the debris beds formed both in short term and later phase are coolable by the design which secures sufficient coolant flow around the core catcher located in the cold pool.
Imai, Masaki; Chudo, Hiroyuki; Ono, Masao; Harii, Kazuya; Matsuo, Mamoru; Onuma, Yuichi*; Maekawa, Sadamichi; Saito, Eiji
Applied Physics Letters, 114(16), p.162402_1 - 162402_4, 2019/04
Times Cited Count:11 Percentile:77.53(Physics, Applied)Imai, Masaki; Ogata, Yudai*; Chudo, Hiroyuki; Ono, Masao; Harii, Kazuya; Matsuo, Mamoru*; Onuma, Yuichi*; Maekawa, Sadamichi; Saito, Eiji
Applied Physics Letters, 113(5), p.052402_1 - 052402_3, 2018/07
Times Cited Count:12 Percentile:69.15(Physics, Applied)Ogata, Yudai; Chudo, Hiroyuki; Gu, B.; Kobayashi, Nobukiyo*; Ono, Masao; Harii, Kazuya; Matsuo, Mamoru; Saito, Eiji; Maekawa, Sadamichi
Journal of Magnetism and Magnetic Materials, 442, p.329 - 331, 2017/11
Times Cited Count:5 Percentile:57.14(Materials Science, Multidisciplinary)Onuma, Yuichi; Matsuo, Mamoru*; Maekawa, Sadamichi; Saito, Eiji
Magune, 12(5), p.217 - 224, 2017/10
no abstracts in English
Kobayashi, Daima*; Yoshikawa, Tomohide*; Matsuo, Mamoru*; Iguchi, Ryo*; Maekawa, Sadamichi; Saito, Eiji; Nozaki, Yukio*
Physical Review Letters, 119(7), p.077202_1 - 077202_5, 2017/08
Times Cited Count:58 Percentile:96.25(Physics, Multidisciplinary)Ogata, Yudai; Chudo, Hiroyuki; Ono, Masao; Harii, Kazuya; Matsuo, Mamoru; Maekawa, Sadamichi; Saito, Eiji
Applied Physics Letters, 110(7), p.072409_1 - 072409_4, 2017/02
Times Cited Count:11 Percentile:60.64(Physics, Applied)Matsuo, Mamoru; Saito, Eiji; Maekawa, Sadamichi
Journal of the Physical Society of Japan, 86(1), p.011011_1 - 011011_7, 2017/01
Times Cited Count:17 Percentile:80.77(Physics, Multidisciplinary)We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Takahashi, Ryo*; Matsuo, Mamoru; Ono, Masao; Harii, Kazuya; Chudo, Hiroyuki; Okayasu, Satoru; Ieda, Junichi; Takahashi, Saburo*; Maekawa, Sadamichi; Saito, Eiji
Nature Physics, 12, p.52 - 56, 2016/01
Times Cited Count:65 Percentile:95.17(Physics, Multidisciplinary)Ono, Masao; Chudo, Hiroyuki; Harii, Kazuya; Okayasu, Satoru; Matsuo, Mamoru; Ieda, Junichi; Takahashi, Ryo*; Maekawa, Sadamichi; Saito, Eiji
Physical Review B, 92(17), p.174424_1 - 174424_4, 2015/11
Times Cited Count:19 Percentile:68.15(Materials Science, Multidisciplinary)Harii, Kazuya; Chudo, Hiroyuki; Ono, Masao; Matsuo, Mamoru; Ieda, Junichi; Okayasu, Satoru; Maekawa, Sadamichi; Saito, Eiji
Japanese Journal of Applied Physics, 54(5), p.050302_1 - 050302_3, 2015/05
Times Cited Count:10 Percentile:48.8(Physics, Applied)Iwasawa, Yuzuru*; Abe, Yutaka*; Kaneko, Akiko*; Kanagawa, Tetsuya*; Saito, Shimpei*; Matsuo, Eiji*; Ebihara, Kenichi; Sakaba, Hiroshi*; Koyama, Kazuya*; Nariai, Hideki*
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05
For the safety design in which heat is properly removed from the molten fuel after the core disruptive accident in a sodium-cooled fast reactor, the estimation of the breakup behavior of molten fuel discharged into the coolant like a jet is desired. In order to investigate the influence of viscocity on the jet behavior, we simulated a jet discharged into a coolant using the three-dimensional lattice Boltzmann model for two-phase fluid, and examined the influence of Ohnesorge number and Reynolds number on the jet behavior. As a result, we made clear that it is necessary to consider viscosity of the coolant as well as that of the jet for the estimation of jet behavior.
Chudo, Hiroyuki; Harii, Kazuya; Matsuo, Mamoru; Ieda, Junichi; Ono, Masao; Maekawa, Sadamichi; Saito, Eiji
Journal of the Physical Society of Japan, 84(4), p.043601_1 - 043601_4, 2015/04
Times Cited Count:15 Percentile:73.28(Physics, Multidisciplinary)