Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kanemura, Takuji; Kondo, Hiroo; Hoashi, Eiji*; Suzuki, Sachiko*; Yamaoka, Nobuo*; Horiike, Hiroshi*; Furukawa, Tomohiro; Hirakawa, Yasushi; Ida, Mizuho; Matsushita, Izuru*; et al.
Fusion Engineering and Design, 88(9-10), p.2547 - 2551, 2013/10
Times Cited Count:4 Percentile:32.11(Nuclear Science & Technology)In the Engineering Validation and Engineering Design Activities (EVEDA) project of the International Fusion Materials Irradiation Facility (IFMIF), thickness variation of a liquid lithium (Li) jet simulating the IFMIF Li target is to be measured in the EVEDA Li Test Loop. This paper presents fabrication and performance tests results of a contact-type liquid level sensor for measuring the jet thickness variation. The sensor can detect contacts between a probe and Li, and analysis of the contact signals yields average jet thickness and amplitude distribution. One of the key fabrication requirements is to drive the probe by 0.1 mm step with positioning precision of 0.01 mm under the vacuum condition of 10Pa. To achieve such requirements, a high torque motor reducer and a friction-reduced ball screw were selected. As a result of the performance tests, the measurement results of the positioning resolution and precision were 0.1 mm and 0.01 mm, respectively.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Nakamura, Kazuyuki; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.
Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03
Construction and initial performance tests of EVEDA (Engineering Validation and Engineering Design Activities) Lithium Test Loop (ELTL) were completed and therefore one of the major milestones in the engineering validation toward IFMIF (International Fusion Materials Irradiation Facility) was accomplished. The ELTL, which holds 2.5-ton Li, is a proto-type of a Li target facility of the IFMIF and is the largest-ever liquid lithium loop in the history of the fusion research.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.
Fusion Engineering and Design, 87(5-6), p.418 - 422, 2012/08
Times Cited Count:25 Percentile:85.66(Nuclear Science & Technology)The EVEDA Li test loop (ELTL) successfully completed its construction and installation of a total of 2.5-ton Li in the frame work of the IFMIF/EVEDA as one of the ITER-BA. The construction was started on Nov. 2009 in the Oarai site of the Japan Atomic Energy Agency and completed on the middle of Nov. 2010 after passing an authority inspection by a fire department in Oarai town. Subsequently, the 2.5-ton Li was installed to the ELTL by using a glove box. The nitrogen concentration in the 2.5-ton Li was found to be 127 wppm.
Kanemura, Takuji; Kondo, Hiroo; Suzuki, Sachiko*; Hoashi, Eiji*; Yamaoka, Nobuo*; Horiike, Hiroshi*; Furukawa, Tomohiro; Ida, Mizuho; Nakamura, Kazuyuki; Matsushita, Izuru*; et al.
Fusion Science and Technology, 62(1), p.258 - 264, 2012/07
Times Cited Count:4 Percentile:31.65(Nuclear Science & Technology)In the Engineering Validation and Engineering Design Activities (EVEDA) project of the International Fusion Materials Irradiation Facility (IFMIF), which is one of the Broader Approach (BA) activities, thickness variation of a liquid lithium (Li) jet simulating the IFMIF Li target is planned to be measured in the EVEDA Li Test Loop (ELTL). For this purpose, a contact-type liquid level sensor was developed, which can detect contacts between a probe and Li. Analysis of the contact signals yields average jet thickness and amplitude distribution. One of the key development requirements is to drive the probe by 0.1 mm step with positioning accuracy of 0.01 mm under the vacuum condition of 10Pa. To satisfy such a requirement, the sensor's own weight load and moment load were calculated, and based on those calculation results a powerful motor and a friction-reduced ball screw were selected and strong structure was adopted. We have successfully completed the design work of the sensor.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Kazuyuki; Ida, Mizuho; Watanabe, Kazuyoshi; Kanemura, Takuji; Wakai, Eiichi; Horiike, Hiroshi*; Yamaoka, Nobuo*; et al.
Nuclear Fusion, 51(12), p.123008_1 - 123008_12, 2011/12
Times Cited Count:39 Percentile:82.61(Physics, Fluids & Plasmas)The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.
Proceedings of Plasma Conference 2011 (PLASMA 2011) (CD-ROM), 2 Pages, 2011/11
The EVEDA Li test loop (ELTL) successfully completed its construction and commissioning in the frame work of the IFMIF/EVEDA as one of the ITER-BA. The construction was started on Nov. 2009 in the O-arai site of the Japan Atomic Energy Agency and completed on the middle of Nov. 2010. In the commissioning conducted subsequently, the following tests were performed: (1) Li ingots installation into the ELTL, (2) Li charging and draining operation, (3) Li circulation tests. In a final phase of the circulation test, stable liquid Li flow at a velocity of 5 m/s was successfully achieved.
Furukawa, Tomohiro; Kondo, Hiroo; Hirakawa, Yasushi; Kato, Shoichi; Matsushita, Izuru*; Ida, Mizuho; Nakamura, Kazuyuki
Fusion Engineering and Design, 86(9-11), p.2433 - 2436, 2011/10
Times Cited Count:11 Percentile:63.79(Nuclear Science & Technology)In order to obtain the engineering data on the lithium target system, which is the neutron source of the International Fusion Material Irradiation Facility (IFMIF), the design and fabrication of the IFMIF/EVEDA Lithium Test Loop are being carried out under the Engineering Validation and Engineering Design Activity (EVEDA). The loop will hold 2.5 tons of lithium. Since lithium is specified by Japanese law as a dangerous substance, countermeasures which assumed a lithium leak incident and various abnormal issues are indispensable. This paper describes about the safety principles and measures for lithium leaks of the IFMIF/EVEDA lithium test loop decided under the detailed design process.
Kanemura, Takuji; Sugiura, Hirokazu*; Yamaoka, Nobuo*; Suzuki, Sachiko*; Kondo, Hiroo; Ida, Mizuho; Matsushita, Izuru*; Horiike, Hiroshi*
Fusion Engineering and Design, 86(9-11), p.2462 - 2465, 2011/10
Times Cited Count:5 Percentile:38.41(Nuclear Science & Technology)Wave period of free-surface waves on a high-speed liquid lithium (Li) jet is very important wave characteristics to investigate for validation of a Li target of the International Fusion Materials Irradiation Facility (IFMIF). In this paper, we report characteristics of wave period measured by a contact-type liquid level sensor. The experiments were conducted at a Li loop in Osaka University. In this loop, a plane Li jet simulating the IFMIF Li target can be controlled at the velocities of up to 15 m/s. Probability density distribution of the measured wave periods was nearly equal to the log-normal distribution. The fact that the wave period distribution is nearly equal to the log-normal distribution has been already identified in the ocean waves which are known for its random property. From present and previous our experimental results, it was concluded that random wave property developed for the ocean waves can apply to the free-surface waves on the Li jet.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Ida, Mizuho; Yagi, Juro*; Suzuki, Akihiro*; Fukada, Satoshi*; Matsushita, Izuru*; Nakamura, Kazuyuki
Fusion Engineering and Design, 86(9-11), p.2437 - 2441, 2011/10
Times Cited Count:22 Percentile:83.52(Nuclear Science & Technology)Engineering Validation and Engineering Design Activities (EVEDA) for The International Fusion Materials Irradiation Facility (IFMIF) were started from July 2007 under an international agreement called ITER Broader Approach. As a major Japanese activity, EVEDA Li test loop (ELTL) to simulate hydraulic and impurity conditions of IFMIF has already designed and is under construction, in which feasibility of hydraulic stability of the liquid Li target, the purification systems of hot traps are major key issues to be validated in this loop. This paper focuses on the purification systems of the ELTL. Design of a cold trap and hot traps are discussed in this paper.
Kanemura, Takuji; Kondo, Hiroo; Sugiura, Hirokazu*; Horiike, Hiroshi*; Yamaoka, Nobuo*; Furukawa, Tomohiro; Ida, Mizuho; Matsushita, Izuru*; Nakamura, Kazuyuki
Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 7 Pages, 2011/10
Regarding R&Ds on the International Fusion Materials Irradiation Facility (IFMIF), validation of hydraulic stability of a liquid Li jet simulating the IFMIF Li target is of crucial importance and thus, is planned to be performed using EVEDA Li test loop. This paper presents diagnostics of the Li jet to be implemented in validation tests of the jet stability. In the tests, the following physical parameters need to be measured; thickness of the jet; height, length and frequency of free-surface waves; and Li evaporation rate. A high-speed video (HSV) camera is planned to be used for understanding of detailed structure of free-surface waves, and the HSV images are to be analyzed to obtain wave velocity and frequency. To measure jet thickness and wave height, a contact-type liquid level sensor is to be used. With regard to Li evaporation rate, deposition of Li on the specimens installed near the free surface is to be measured. In addition, frequency change of a crystal quartz will be utilized.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Ida, Mizuho; Watanabe, Kazuyoshi; Kanemura, Takuji; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.
Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 7 Pages, 2011/10
Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) were started from July 2007 under an international agreement called ITER Broader Approach. As a major Japanese activity, EVEDA Li test loop (ELTL) to simulate hydraulic and impurity conditions of IFMIF has already designed and is under construction, in which feasibility of hydraulic stability of the liquid Li target, the purification systems of hot traps are major key issues to be validated in this loop. This paper presents the engineering design of the main electro-magnetic pump of the ELTL including the pressure drop calculation and evaluation of the cavitation inception.
Kondo, Hiroo; Kanemura, Takuji*; Sugiura, Hirokazu*; Yamaoka, Nobuo*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; Horiike, Hiroshi*
Fusion Engineering and Design, 85(7-9), p.1102 - 1105, 2010/12
Times Cited Count:12 Percentile:62.11(Nuclear Science & Technology)This paper reports a measurement technique for surface waves on a liquid lithium jet for a Li target of the International Fusion Materials Irradiation Facility. The characteristic of the waves was successfully clarified by a contact-type liquid level detector. As a result, it was found that the wave distributions in the all jet velocity range up to 15 m/s were conformed each other in normalized form and Rayleigh distribution which is one of popular model to show irregular water wave.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Ida, Mizuho; Matsushita, Izuru*; Horiike, Hiroshi*; Kanemura, Takuji; Sugiura, Hirokazu*; Yagi, Juro*; Suzuki, Akihiro*; et al.
Journal of Engineering for Gas Turbines and Power, 133(5), p.052910_1 - 052910_6, 2010/12
Times Cited Count:7 Percentile:38.51(Engineering, Mechanical)As a major Japanese activity for the IFMIF/EVEDA, EVEDA Li Test Loop (ELTL) to simulate hydraulic and impurity conditions of IFMIF is under design and preparation for fabrication. Feasibility of hydraulic stability of the liquid Li target and the purification systems of hot traps are major key issues to be validated. This paper presents the current status of the design and construction of the EVEDA Li Test Loop. Detail designs of the loop components such as the target assembly, tanks, an electro-magnetic pump and flow meter and a cold trap for purification system are described in addition to the flow diagnostics system and the hot traps.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Hiroo*; Ida, Mizuho; Watanabe, Kazuyoshi; Miyashita, Makoto*; Horiike, Hiroshi*; Yamaoka, Nobuo*; Kanemura, Takuji; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10
The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.
Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Matsushita, Izuru*; Ida, Mizuho; Horiike, Hiroshi*; Kanemura, Takuji; Sugiura, Hirokazu*; Yagi, Juro*; Suzuki, Akihiro*; et al.
Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 9 Pages, 2010/05
IFMIF is a neutron source aimed at producing an intense high energy neutron flux for testing candidate fusion reactor materials. Under Broader Approach activities, Engineering Validation and Engineering Design Activities (EVEDA) of IFMIF started on July 2007. Regarding to the lithium (Li) target facility, design and construction of EVEDA Li Test Loop is a major activity and is in progress. The detail design was started at the early 2009. Fabrication of the loop was started at middle of 2009, and completion is planned at the end of Feb. 2011.
Kondo, Hiroo*; Kanemura, Takuji*; Sugiura, Hirokazu*; Yamaoka, Nobuo*; Miyamoto, Seiji*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; Horiike, Hiroshi*
Fusion Engineering and Design, 84(7-11), p.1086 - 1090, 2009/06
Times Cited Count:9 Percentile:53.00(Nuclear Science & Technology)A liquid lithium(Li) target of International Fusion Materials Irradiation Facility (IFMIF) is formed as flat plane free-surface flow by a nozzle and flows at high speed around 15 m/s. This paper focuses on flatness of the liquid Li target. A Li flow experiment was conducted in Osaka University Li Loop with a test section which was 1/2.5 scaled model of IFMIF. A thickness of the Li flow was measured and obtained by a contact method which was developed for the measurement. Analytical study on Kelvin wake and numerical calculation on wakes near side walls of the flow channel were also conducted and compared with the experimental results. As the results, positions of wake crest obtained from both of the experiment and numerical calculation assuming contact angle 140 agreed well with an iso-phase line of the analytical model. Generation of the wake are likely depends on wettability between Li and a structural material which is 304SS in the present study.
Sugiura, Hirokazu*; Kondo, Hiroo*; Kanemura, Takuji*; Niwa, Yuta*; Yamaoka, Nobuo*; Miyamoto, Seiji*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; et al.
Fusion Engineering and Design, 84(7-11), p.1803 - 1807, 2009/06
Times Cited Count:3 Percentile:24.38(Nuclear Science & Technology)To develop a diagnostics system in view of its application on International Fusion Materials Irradiation Facility (IFMIF) liquid lithium (Li) target, velocity measurements on a liquid Li flow were performed in a Li circulation loop at Osaka University with a test section having a contraction nozzle 1/2.5 scale of IFMIF and producing a flat plane jet of 70 mm width and 10 mm thickness. Based on the Particle Image Velocimetry (PIV) technique, a local Li flow velocity distribution was measured by tracking brightness intensity patterns of surface waves generated on the flow. Measured surface velocity showed good agreement with a surface velocity obtained in previous water experiments, and had an insignificant effect at an area corresponding to a deuteron beam irradiation area on the IFMIF target.
Kondo, Hiroo*; Kanemura, Takuji*; Yamaoka, Nobuo*; Miyamoto, Seiji*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; Horiike, Hiroshi*
Fusion Engineering and Design, 82(15-24), p.2483 - 2489, 2007/10
Times Cited Count:11 Percentile:60.92(Nuclear Science & Technology)Lithium flow experiments were conducted for International Fusion Materials Irradiation Facility (IFMIF) at Osaka University. In the experiment, Li plane jet of 10 mm in depth and 70 mm in width formed by a two contractions nozzle was tested in the velocity range of less than 15 m/s. In the present report, Li surface measurement by pattern projection method was tested. This is a three dimensional image measurement, where stripe patterns are projected onto the flow surface without touching it. The projected patterns were observed to be deformed according to the surface up- and- down. Three-dimensional surface shape could be obtained by analyzing the deformed patterns. By the method, shapes of wave pattern called surface wakes were successfully measured. The surface wakes were observed to be formed from the nozzle edge. It was found that the nozzle edge was damaged and became serrated after lithium flowing of 1,300 hours at this moment.
Kanemura, Takuji*; Kondo, Hiroo*; Yamaoka, Nobuo*; Miyamoto, Seiji*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; Horiike, Hiroshi*
Fusion Engineering and Design, 82(15-24), p.2550 - 2557, 2007/10
Times Cited Count:23 Percentile:81.55(Nuclear Science & Technology)For a study on characteristics of lithium target flow of International Fusion Materials Irradiation Facility (IFMIF), experiments were carried out by using a lithium loop at Osaka University. In the experiment, fluctuations of a free surface of the horizontal flow were directly measured by using an electro-contact probe acquiring condition of contact/non-contact of the probe with the flow surface as voltage data. Vertical location of the probe tip was set by 0.1 mm step. Horizontal location of the probe was 175 mm downstream from the nozzle exit, corresponding to the footprint of deuteron beam in the IFMIF case. It was found that the maximum amplitude of the surface wave, including rarely arising ones, was 2.2 mm at the center of the flow channel with width of 70 mm at the maximum flow velocity of 15 m/s. The average thickness of the flow was found to be 10.13 mm.
Horiike, Hiroshi*; Kondo, Hiroo*; Nakamura, Hiroo; Miyamoto, Seiji*; Yamaoka, Nobuo*; Matsushita, Izuru*; Ida, Mizuho; Ara, Kuniaki; Muroga, Takeo*; Matsui, Hideki*
Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03
no abstracts in English