Search Results: Records 1-7 displayed on this page of 7

- 1

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Nishio, Katsuhisa; Hofmann, S.*; Ikezoe, Hiroshi; Heberger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; et al.

Nuclear Physics A, 805(1-4), p.516 - 518, 2008/06

Nishio, Katsuhisa; Hofmann, S.*; Ikezoe, Hiroshi; Heberger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; et al.

Journal of Nuclear and Radiochemical Sciences, 8(2), p.73 - 78, 2007/10

Nishio, Katsuhisa; Hofmann, S.*; Heberger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; Ikezoe, Hiroshi; et al.

AIP Conference Proceedings 891, p.71 - 79, 2007/03

Seaborgium isotopes were produced in the fusion reaction Si + U as evaporation residues (ERs), and the cross sections were determined. The experiment was carried out at GSI in Darmstadt, Germany. At the center-of-mass energy of E= 144 MeV, three decay chains starting from Sg were observed, and the corresponding ER cross section was determined to be 67 pb. At the sub-barrier energy of E= 133 MeV, three spontaneous fission events of a new isotope Sg were detected. The cross section was 10 pb. The half-life of Sg was determined to be 120 ms. The ER cross sections were compared with a statistical model calculation. In the fusion process, the coupled channel calculation taking into account the prolate deformation of U was adopted to determine the capture cross section. The calculated capture cross section agrees well with the fission cross section of Si + U obtained at the JAEA tandem accelerator. The measured cross section of Sg at the sub-barrier energy is factor 10 larger than the calculation based on the one-dimensional model in the fusion process, showing the fusion enhancement caused by the deformation of U. However, disagreement with the calculation suggests the presence of quasi-fission channel. At the above barrier energy of E = 144 MeV, the measured cross section is well reproduced by the calculation. This means that the interaction of Si at the equotorial side of U has advantage on the fusion process.

Nishio, Katsuhisa; Hofmann, S.*; Heberger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; Ikezoe, Hiroshi; et al.

European Physical Journal A, 29(3), p.281 - 287, 2006/09

Times Cited Count：62 Percentile：93.87(Physics, Nuclear)Seaborgium isotopes were produced in the fusion reaction Si + U as evaporation residues (ERs), and the cross sections were determined. The experiment was carried out at GSI in Darmstadt, Germany. At the center-of-mass energy of E= 144 MeV, three decay chains starting from Sg were observed, and the corresponding ER cross section was determined to be 67 pb. At the sub-barrier energy of E= 133 MeV, three spontaneous fission events of a new isotope Sg were detected. The cross section was 10 pb. The half-life of Sg was determined to be 120 ms. The ER cross sections were compared with a statistical model calculation. In the fusion process, the coupled channel calculation taking into account the prolate deformation of U was adopted to determine the capture cross section. The calculaed capture cross section agrees well with the fission cross section of Si + U obtained at the JAEA tandem accelerator. The measured cross section of Sg at the sub-barrier energy is factor 10 larger than the calculation based on the one-dimensional model in the fusion process, showing the fusion enhancement caused by the deformation of U. However, disagreement with the calculation suggests the presence of quasi-fission channel. At the above barrier energy of E = 144 MeV, the measured cross section is well reproduced by the calculation. This means that the interaction of Si at the equatorial side of U has advantage on the fusion process.

Mazzocco, M.*; Signorini, C.*; Romoli, M.*; De Francesco, A.*; Di Pietro, M.*; Vardaci, E.*; Yoshida, Koichi*; Yoshida, Atsushi*; Bonetti, R.*; De Rosa, A.*; et al.

European Physical Journal A, 28(3), p.295 - 299, 2006/06

Times Cited Count：46 Percentile：90.38(Physics, Nuclear)The scattering of the radioactive, weakly bound, halo nucleus Be from Bi has been studied at 40 MeV. The measurement performed with a low-intensity and a large-emittance secondary beam could be made using an extremely compact, large solid angle ( 2 sr) detecting set-up, based on 8 highly segmented Si telescopes. The Be scattering angular distributions, as well as their relative reaction cross-sections, resulted to be rather similar. This may suggest that at Coulomb barrier energies the halo structure and the small weakly binding energy of the Be projectile have no big influence on the reaction dynamics.

Nishio, Katsuhisa; Mitsuoka, Shinichi; Ikezoe, Hiroshi; Hofmann, S.*; Heberger, F. P.*; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; et al.

no journal, ,

Seaborgium isotopes were produced in the fusion reaction Si + U as evaporation residues (ERs), and the cross sections were determined. The experiment was carried out at GSI in Darmstadt, Germany. At the center-of-mass energy of E= 144 MeV, three decay chains starting from Sg were observed, and the corresponding ER cross section was determined to be 67 pb. At the sub-barrier energy of E= 133 MeV, three spontaneous fission events of a new isotope Sg were detected. The cross section was 10 pb. The half-life of Sg was determined to be 120 ms. The ER cross sections were compared with a statistical model calculation. In the fusion process, the coupled channel calculation taking into account the prolate deformation of U was adopted to determine the capture cross section. The calculated capture cross section agrees well with the fission cross section of Si + U obtained at the JAEA tandem accelerator. The measured cross section of Sg at the sub-barrier energy is factor 10 larger than the calculation based on the one-dimensional model in the fusion process, showing the fusion enhancement caused by the deformation of U. However, disagreement with the calculation suggests the presence of quasi-fission channel. At the above barrier energy of E = 144 MeV, the measured cross section is well reproduced by the calculation. This means that the interaction of Si at the equotorial side of U has advantage on the fusion process.

Nishio, Katsuhisa; Hofmann, S.*; Ikezoe, Hiroshi; Ackermann, D.*; Antalic, S.*; Comas, V. F.*; Gan, Z.*; Heinz, S.*; Heredia, J. A.*; Heberger, F. P.*; et al.

no journal, ,