Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:2 Percentile:37.82(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 119(51), p.e2211193119_1 - e2211193119_9, 2022/12
Times Cited Count:11 Percentile:80.33(Multidisciplinary Sciences)Do, S.-H.*; Kaneko, Koji; Kajimoto, Ryoichi; Kamazawa, Kazuya*; Stone, M. B.*; Lin, J. Y. Y.*; Ito, Shinichi*; Masuda, Takatsugu*; Samolyuk, G. D.*; Dagotto, E.*; et al.
Physical Review B, 105(18), p.L180403_1 - L180403_6, 2022/05
Times Cited Count:18 Percentile:87.81(Materials Science, Multidisciplinary)Miao, Z.-Q.*; Xia, C.-J.*; Lai, X.-Y.*; Maruyama, Toshiki; Xu, R.-X.*; Zhou, E.-P.*
International Journal of Modern Physics E, 31(4), p.2250037_1 - 2250037_20, 2022/04
Times Cited Count:10 Percentile:86.67(Physics, Nuclear)Yang, J.*; Ren, W.*; Zhao, X.*; Kikuchi, Tatsuya*; Miao, P.*; Nakajima, Kenji; Li, B.*; Zhang, Z.*
Journal of Materials Science & Technology, 99, p.55 - 60, 2022/02
Times Cited Count:9 Percentile:53.39(Materials Science, Multidisciplinary)High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices, differing from traditional alloys. Here, we investigate magnetic and thermal transport properties of the prototype face-centered-cubic high-entropy alloy CrMnFeCoNi by combining physical properties measurements and neutron scattering. Direct-current (dc) and alternating-current (ac) magnetizations measurements indicate a mictomagnetic behavior with coexisting antiferromagnetic and ferromagnetic interactions in the entire temperature region and three anomalies are found at about 80, 50, and 20 K, which are related to the paramagnetic to antiferromagnetic transition, the antiferromagnetic to ferromagnetic transition, and the spin freezing, respectively. The electrical and thermal conductivities are significantly reduced compared to Ni and the temperature dependence of lattice thermal conductivity exhibits a glass-like plateau. Inelastic neutron scattering measurements suggest weak anharmonicity so that the thermal transport is expected to be dominated by the defect scattering.
Wang, X.*; Tang, X.*; Zhang, P.*; Wang, Y.*; Gao, D.*; Liu, J.*; Hui, K.*; Wang, Y.*; Dong, X.*; Hattori, Takanori; et al.
Journal of Physical Chemistry Letters (Internet), 12(50), p.12055 - 12061, 2021/12
Times Cited Count:9 Percentile:60.22(Chemistry, Physical)Substituted polyacetylene is expected to improve the chemical stability, physical properties, and additional functions of the polyacetylene backbones, but its diversity is very limited. Here, by applying external pressure on solid acetylenedicarboxylic acid, we report the first crystalline poly-dicarboxylacetylene with every carbon on the trans-polyacetylene backbone bonded to a carboxyl group, which is very hard to synthesize by traditional methods. This unique structure combines the extremely high content of carbonyl groups and high conductivity of a polyacetylene backbone, which exhibits a high specific capacity and excellent cycling/rate performance as a Li-ion battery (LIB) anode. We present a completely functionalized crystalline polyacetylene and provide a high-pressure solution for the synthesis of polymeric LIB materials and other polymeric materials with a high content of active groups.
Zhang, P.*; Tang, X.*; Wang, Y.*; Wang, X.*; Gao, D.*; Li, Y.*; Zheng, H.*; Wang, Y.*; Wang, X.*; Fu, R.*; et al.
Journal of the American Chemical Society, 142(41), p.17662 - 17669, 2020/10
Times Cited Count:28 Percentile:78.11(Chemistry, Multidisciplinary)Solid-state topochemical polymerization (SSTP) is a promising method to construct functional crystalline polymeric materials, but in contrast to various reactions that happen in solution, only very limited types of SSTP reactions are reported. Diels-Alder (DA) and dehydro-DA (DDA) reactions are textbook reactions for preparing six-membered rings in solution but are scarcely seen in solid-state synthesis. Here, using multiple cutting-edge techniques, we demonstrate that the solid 1,4-diphenylbutadiyne (DPB) undergoes a DDA reaction under 10-20 GPa with the phenyl as the dienophile. The crystal structure at the critical pressure shows that this reaction is "distance-selected". The distance of 3.2 between the phenyl and the phenylethynyl facilitates the DDA reaction, while the distances for other DDA and 1,4-addition reactions are too large to allow the bonding. The obtained products are crystalline armchair graphitic nanoribbons, and hence our studies open a new route to construct the crystalline carbon materials with atomic-scale control.
Li, B.; Luo, X. H.*; Wang, H.*; Ren, W. J.*; Yano, S.*; Wang, C.-W.*; Gardner, J. S.*; Liss, K.-D.*; Miao, P.*; Lee, S.-H.*; et al.
Physical Review B, 93(22), p.224405_1 - 224405_6, 2016/06
Times Cited Count:50 Percentile:86.61(Materials Science, Multidisciplinary)