Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Welding technology on sector assembly of the JT-60SA vacuum vessel

Shibama, Yusuke; Okano, Fuminori; Yagyu, Junichi; Kaminaga, Atsushi; Miyo, Yasuhiko; Hayakawa, Atsuro*; Sagawa, Keiich*; Mochida, Tsutomu*; Morimoto, Tamotsu*; Hamada, Takashi*; et al.

Fusion Engineering and Design, 98-99, p.1614 - 1619, 2015/10

 Times Cited Count:2 Percentile:73.33(Nuclear Science & Technology)

The JT-60SA vacuum vessel (150 tons) is a double wall torus structure and the maximum major radius of 5.0 m and height of 6.6 m. The manufacturing design concept is that the vessel is split in the 10 toroidal sectors manufactured at factory, and assembled on-site; seven of the 40-degree sectors, two of the 30-degree beside final one, and the final of the 20-degree. The final sector is assembled with the VV thermal shield and toroidal field magnets into the 340-degree as prepared in one sector. Sectors are temporally fitted on-site and adjusted one over the other before the assembly. After measurement of the dimensions and the reference, these sectors are transferred onto the cryostat base. First, three 80-degree sectors are manufactured with mating each 40-degree sector by direct joint welding. The rest sectors including the final sector are jointed with splice plates. Welding manipulator and its guide rails are used for these welding. In this paper, the detail of the VV sectors assembly including the final sector is explained. Welding technologies to joint the two of 40-degree sectors are reported with the present manufacturing status and the welding trial on the vertical stub with the partial mock-up of the final sector are discussed with the assembly process.

Journal Articles

Mechanical properties of full austenitic welding joint at cryogenic temperature for the ITER toroidal field coil structure

Iguchi, Masahide; Saito, Toru; Kawano, Katsumi; Chida, Yutaka; Nakajima, Hideo; Ogawa, Tsuyoshi*; Katayama, Yoshinori*; Ogata, Hiroshige*; Minemura, Toshiyuki*; Tokai, Daisuke*; et al.

Fusion Engineering and Design, 88(9-10), p.2520 - 2524, 2013/10

 Times Cited Count:8 Percentile:36.16(Nuclear Science & Technology)

ITER TFC structures are large welding structures made of heavy thick stainless steels. JAEA plans to apply narrow gap TIG welding with FMYJJ1 which is full austenitic stainless filler material to manufacture TFC structure. FMYJJ1 is specified in "Codes for Fusion Facilities -Rules on Superconducting Magnet Structure (2008)". In order to evaluate effect of base material combinations and thickness of welded joint on tensile properties at 4 K, tensile tests were conducted at 4 K by using tensile specimens taken from 40 mm thickness weld joints of four combinations and 200 mm thickness ones of two combinations of base materials. These weld joints were manufactured by one side narrow gap TIG welding with FMYJJ1. As the results, it was confirmed that yield and tensile strengths of welded joint at 4K were decreased with decreasing of nitrogen of base material, and there were no large distribution of strengths at 4 K along the thickness of welded joints of 200 mm thickness.

Journal Articles

Development of structures for ITER toroidal field coil in Japan

Iguchi, Masahide; Chida, Yutaka; Takano, Katsutoshi; Kawano, Katsumi; Saito, Toru; Nakajima, Hideo; Koizumi, Norikiyo; Minemura, Toshiyuki*; Ogata, Hiroshige*; Ogawa, Tsuyoshi*; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4203305_1 - 4203305_5, 2012/06

 Times Cited Count:8 Percentile:49.63(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) has responsibility to procure 19 structures for ITER toroidal field (TF) coils as in-kind components. JAEA plans to use materials specified in the material section of "Codes for Fusion Facilities; Rules on Superconducting Magnet Structure (2008)" issued by the Japan Society of Mechanical Engineers (JSME) in 2008. Large forged products were produced and their mechanical properties at 4K were evaluated. In addition, the following activities have been performed; (1) to optimize the design of each weld type identified in the manufacturing sequence, (2) to qualify typical welding procedure including repair, (3) to establish welding techniques other than narrow gap TIG welding with FMYJJ1, (4) to demonstrate the manufacturing procedures through manufacture of 1-m mockups and full-scale segments of TFC structure. This paper describes the results of material qualification and industrialization activities of manufacturing processes of ITER TFC structure.

Journal Articles

Development in fabrication structures for the ITER toroidal field coils

Iguchi, Masahide; Chida, Yutaka; Nakajima, Hideo; Ogawa, Tsuyoshi*; Katayama, Yoshinori*; Ogata, Hiroshige*; Minemura, Toshiyuki*; Miyabe, Keisuke*; Tokai, Daisuke*; Niimi, Kenichiro*

Teion Kogaku, 47(3), p.193 - 199, 2012/03

Japan Atomic Energy Agency (JAEA) has conducted qualification and rationalization activities in Japan in order to rationalize manufacturing procedure of ITER Toroidal Field (TF) coil structures. The activities included qualification of structural materials and qualification of welding procedure according to Japan Society of Mechanical Engineers (JSME) code constituted for fusion devices, demonstration of the manufacturing method and procedures through full-scale segments of TF coil structure. From results of these activities, JAEA confirmed applicability of JSME code to actual series TF coil structures as quality control method hence the quality of structural materials and weld joints of Gas Tungsten Arc Welding (GTAW) were satisfied ITER requirement. In addition, JAEA obtained knowledge of welding deformation of actual TF coil structures. This paper describes results of these qualification and development activities for TF coil structure.

Oral presentation

ITER TF coil structure full scale trial production result

Sakurai, Takeru; Iguchi, Masahide; Nakahira, Masataka; Minemura, Toshiyuki*; Yanagi, Yutaka*; Osemochi, Koichi*

no journal, , 

no abstracts in English

Oral presentation

Sector manufacturing and assembly of the JT-60SA vacuum vessel

Shibama, Yusuke; Okano, Fuminori; Yagyu, Junichi; Kaminaga, Atsushi; Miyo, Yasuhiko; Hayakawa, Atsuro*; Sagawa, Keiich*; Mochida, Tsutomu*; Morimoto, Tamotsu*; Hamada, Takashi*; et al.

no journal, , 

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1