Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Particle transport of LHD

Tanaka, Kenji*; Kawahata, Kazuo*; Tokuzawa, Tokihiko*; Akiyama, Tsuyoshi*; Yokoyama, Masayuki*; Shoji, Mamoru*; Michael, C. A.*; Vyacheslavov, L. N.*; Murakami, Sadayoshi*; Wakasa, Arimitsu*; et al.

Fusion Science and Technology, 58(1), p.70 - 90, 2010/07

 Times Cited Count:23 Percentile:82.36(Nuclear Science & Technology)

Particle confinement processes were studied in detail on LHD. Diffusion coefficients (D) and convection velocities (V) were estimated from density modulation experiments. The magnetic configuration and collisionality were widely scanned in order to investigate parameter dependences of D and V. In order to study the effect of the magnetic configuration, magnetic axis positions (R$$_{ax}$$) were scanned from 3.5 m to 3.9 m. This scan changed the magnetic ripples quite significantly, enabling the effects of neoclassical properties on measured values to be widely elucidated. Dependences of electron temperature (T$$_{e}$$) and helically trapped normalized collsionality ($$nu$$$$_{h}^{*}$$), where $$nu$$$$_{h}^{*}$$=1 indicates a rough boundary between the 1/$$nu$$ and plateau regimes, were examined using the heating power scan of neutral beam injection (NBI). It was found out that generally larger (or smaller) contributions of neoclassical transport resulted in more hollow (or peaked) density profiles. The larger neoclassical contribution was found to be situated at a more outwardly shifted R$$_{ax}$$ for the same T$$_{e}$$, and higher T$$_{e}$$ or lower $$nu$$$$_{h}^{*}$$ at each R$$_{ax}$$. However, it is to be noted that R$$_{ax}$$=3.5 m showed different characteristics from these trends in that this case showed a more peaked density profile at higher T$$_{e}$$.

Oral presentation

Response of turbulence under change of density profiles in toroidal devices

Tanaka, Kenji*; Takenaga, Hidenobu; Muraoka, Katsunori*; Michael, C.*; Vyacheslavov, L. N.*; Mishchenko, A.*; Yokoyama, Masayuki*; Yamada, Hiroshi*; Oyama, Naoyuki; Urano, Hajime; et al.

no journal, , 

Comparative studies were carried out in LHD heliotron and JT-60U tokamak plasmas to elucidate effects of turbulence transport on density profiles in toroidal systems. A difference in the collisionality dependence was found between the two devices. In LHD, the density peaking factor decreased with decrease of the collisionality at the magnetic axis position (R$$_{ax}$$) of 3.6 m. On the other hand, in JT-60U, the density peaking factor clearly increased with a decrease of the collisionality. For R$$_{ax}$$=3.6 m in LHD, the increase of the fluctuation power with an increase in P$$_{NB}$$ was observed for a hollow density profile suggesting an increase on diffusion due to anomalous processes. In JT-60U, the increase of the radial coherence was observed with higher density peaking profile suggesting enhanced diffusion and inward directed pinch. The effects of curvature pinch on density profiles were also investigated in both devices. The curvature pinch produces a peaked density profile in JT-60U and a hollow density profile in LHD depending on their magnetic shear. However, these effects were too small to explain the density profiles observed in both devices.

2 (Records 1-2 displayed on this page)
  • 1