Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 75

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

New market opened up by advanced nuclear reactors (Chapter 3, 4, 5, 7)

Kamide, Hideki; Kawasaki, Nobuchika; Hayafune, Hiroki; Kubo, Shigenobu; Chikazawa, Yoshitaka; Maeda, Seiichiro; Sagayama, Yutaka; Nishihara, Tetsuo; Sumita, Junya; Shibata, Taiju; et al.

Jisedai Genshiro Ga Hiraku Atarashii Shijo; NSA/Commentaries, No.28, p.14 - 36, 2023/10

Developments of next generation nuclear reactors, e.g., Fast Reactor, and High Temperature Gas cooled Reactor, are in progress. They can contribute to markets of electricity and industrial heat utilization in the world including Japan. Here, current status of reactor developments in Japan and also situation in the world are summarized, especially for activities of Generation IV International Forum (GIF), developments of Fast Reactor and High Temperature Gas cooled Reactor in Japan, and SMR movements in the world.

Journal Articles

Development of analytical techniques for isotopic composition determination of uranium particles in environmental sample for safeguards with Secondary Ion Mass Spectrometry

Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

Hosha Kagaku, (48), p.1 - 15, 2023/09

Secondary Ion Mass Spectrometry (SIMS) is the method to detect secondary ions produced by the sputtering of primary ions. SIMS is one of effective method to measure isotopic composition of particles containing nuclear material in environmental sample for safeguards. We are a group member of the International Atomic Energy Agency (IAEA)'s network of analytical laboratories and have developed analytical techniques using SIMS and other mass spectrometers for nuclear safeguards. We will introduce the principle of SIMS and analytical techniques developed by our group to measure isotopic composition of uranium particles which having a particle diameter of micron order in environmental sample for safeguards.

Journal Articles

Analytical technique for isotope composition of nuclear micro particles

Miyamoto, Yutaka; Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Yasuda, Kenichiro

Isotope News, (786), p.22 - 25, 2023/04

no abstracts in English

Journal Articles

Variation of crystallinity and secondary ion quantity of uranium particles with heating temperature of Sample preparation

Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka

KEK Proceedings 2022-2, p.108 - 113, 2022/11

Automated Particle Measurement (APM) is the first measurement of environmental sample for safeguard purpose. APM tells us the number of particles in sample, their enrichment and their location. Precision and accuracy of APM is easily affected by particle condition. We have investigated how influential baking temperature in sample preparation are for uranium secondary ion quantity, uranium hydride generation and particle crystallinity. Our experimental results showed that baking temperature of 800$$^{circ}$$C reduced uranium secondary ion quantity to 33% compared with baking at 350$$^{circ}$$C. Uranium hydride generation ratio of the sample baked at 850$$^{circ}$$C was also 4 times higher than the sample baked at 350$$^{circ}$$C. Baking at 850$$^{circ}$$C raised only crystallinity of uranium particles. Baking sample at too high temperature caused less uranium secondary ion generation and much more uranium hydride generation. It made precision and accuracy of APM worse. In our experiment, baking at 350$$^{circ}$$C is suitable for uranium particles in the safeguards sample.

Journal Articles

Preparation of the particles containing isotope reference uranium for the determination of the low abundant U isotope ratios

Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka

KEK Proceedings 2022-2, p.154 - 158, 2022/11

Precise determination of minor U isotopes ($$^{233}$$U and $$^{236}$$U) of particles from the safeguard environmental samples is powerful method for detecting the undeclared nuclear activities. In this study, preparation method of U particle was examined to utilize for the minor U isotope determination. The porous silica particles were used as the particle matrix and lutetium was mixed to the impregnation solution as U impregnation indicator for the particle picking. The result of the Scanning Electron Microscope indicated that the contacting the solution with Si particles overnight gently could produce the impregnated particles effectively rather than the mixing them with PFA stick.

Journal Articles

An Examination of rapid analysis of $$^{226}$$Ra in natural water samples by ICP-MS

Tomita, Jumpei; Ozawa, Mayumi; Ohara, Yoshiyuki; Miyamoto, Yutaka

KEK Proceedings 2021-2, p.130 - 134, 2021/12

no abstracts in English

Journal Articles

Optimization of SIMS-APM for high enrichment uranium particles including higher uranium hydride

Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka

KEK Proceedings 2021-2, p.146 - 150, 2021/12

no abstracts in English

Journal Articles

Age determination analysis of a single uranium particle for safeguards

Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Esaka, Fumitaka; Yasuda, Kenichiro; Miyamoto, Yutaka

Journal of Radioanalytical and Nuclear Chemistry, 328(1), p.103 - 111, 2021/04

 Times Cited Count:3 Percentile:45.99(Chemistry, Analytical)

An analytical technique was developed to determine the age of uranium particles for safeguards. After the chemical separation of uranium and thorium, the $$^{230}$$Th/$$^{234}$$U ratio was measured using single-collector inductively coupled plasma mass spectrometry and a $$^{233}$$U-based reference material comprising a certain amount of $$^{229}$$Th as a progeny nuclide of $$^{233}$$U. The results allowed us to determine the purification age of two certified materials, i.e., U-850 and U-100, which was in good agreement with the reference purification age (61 y). Moreover, the age of a single U-850 particle was determined with a difference of -28 to 2 years from the reference date.

Journal Articles

Current status of JAEA Ningyo-toge Decommissioning Project

Yagi, Naoto; Mita, Yutaka; Kanda, Nobuhiro

Dekomisshoningu Giho, (61), p.2 - 11, 2020/03

Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency has been conducting research and development on uranium exploration, uranium mining, uranium refining / conversion, and uranium enrichment. Currently, our Center has completed its initial mission and is conducting decommissioning of facilities used for R&D, and R&D for decommissioning. Of the three main facilities of our Center, the refining conversion facility and the enrichment engineering facility have already begun dismantling equipment in the facilities. The uranium enrichment demonstration plant is in the process of applying for a decommissioning plan. This report provides an overview of the current status of our Center's decommissioning.

Journal Articles

Study on decontamination of steel surface contaminated with uranium hexafluoride by acidic electrolytic water

Nakayama, Takuya; Nomura, Mitsuo; Mita, Yutaka; Yonekawa, Hitoshi*; Bunbai, Misako*; Yaita, Yumi*; Murata, Eiichi*; Hosaka, Katsumi*; Sugitsue, Noritake

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 8 Pages, 2019/05

Clearance of contaminated metal is important for recycling and volume reduction of radioactive waste. Among applicable decontamination technologies, immersion method with ultrasonic cleaning is considered to be effective for metal materials having various shapes. in this study is to demonstrate decontamination of carbon steel contaminated by uranium hexafluoride to the target level for clearance (less than 0.04 Bq/cm$$^{2}$$), and minimize secondary waste. In this test, acidic electrolytic water, dilute hydrochloric acid, dilute sulfuric acid and ozone water with various pH and redox potential were used as decontamination solutions to be tested. We found that acidic electrolytic water is effective solution for decontamination of carbon steel contaminated by uranium hexafluoride. It could be decontaminate less than target level for clearance, and reduced secondary waste relatively.

JAEA Reports

Current status of a decommissioning project in the Enrichment Engineering Facility; Results in the second-half of the fiscal year of 2014

Matsumoto, Takashi; Takahashi, Nobuo; Hayashibara, Kenichi; Ishimori, Yuu; Mita, Yutaka; Kakiya, Hideyoshi

JAEA-Technology 2016-020, 80 Pages, 2016/11

JAEA-Technology-2016-020.pdf:17.8MB

The Enrichment Engineering Facility of the Ningyo-toge Environmental Engineering Center was constructed in order to establish the technological basis of plant engineering for uranium enrichment in Japan. Uranium enrichment tests, using natural and reprocessed uranium, were carried out from 1979 to 1989 with two types of centrifuges in the facility. According to the decommissioning plan of the facility, UF$$_{6}$$ handling equipment and supplemental equipment in these plants are intended to be dismantled by 2019 in order to make vacant spaces for future projects use, for example, inventory investigation, precipitation treatment, etc. This report shows the current state of the decommissioning project in the second-half of the fiscal year of 2014.

JAEA Reports

The Uranium waste fluid processing examination by liquid and liquid extraction method using the emulsion flow method

Kanda, Nobuhiro; Daiten, Masaki; Endo, Yuji; Yoshida, Hideaki; Mita, Yutaka; Naganawa, Hirochika; Nagano, Tetsushi; Yanase, Nobuyuki

JAEA-Technology 2015-007, 43 Pages, 2015/03

JAEA-Technology-2015-007.pdf:5.33MB

The centrifuge which has the subtlety information concerning the nuclear nonproliferation used for uranium enrichment technical development exists in the uranium enrichment facilities of Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency. This centrifugal is performing separation processing of the radioactive material adhering to the surface of parts by wet decontamination of ultrasonic cleaning by dilute sulfuric acid and water, etc. By removing the uranium contained in waste fluid, generated sludge reduces activity concentration. And the possibility of reduction of sludge processing is examined. For this reason, from the 2007 fiscal year, Nuclear Science and Engineering Directorate and cooperation are aimed at, and development of the extraction separation technology of the "uranium" by the emulsion flow method is furthered. The test equipment using the developed emulsion flow method was tested. And dilute sulfuric acid and water were used for the examination as actual waste fluid. The result checked whether the various performances in Basic test carried out in Nuclear Science and Engineering Directorate would be obtained.

Journal Articles

Continuous extraction of uranium from actual uranium-containing liquid wastes using an "emulsion flow" extractor

Nagano, Tetsushi; Yanase, Nobuyuki; Naganawa, Hirochika; Mitamura, Hisayoshi; Hanzawa, Yukiko; Mita, Yutaka; Kanda, Nobuhiro; Ohashi, Yusuke; Endo, Yuji; Matsubara, Tatsuo

Nihon Genshiryoku Gakkai Wabun Rombunshi, 12(4), p.277 - 285, 2013/12

no abstracts in English

Journal Articles

Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei

Sonoda, Tetsu*; Wada, Michiharu*; Tomita, Hideki*; Sakamoto, Chika*; Takatsuka, Takaaki*; Furukawa, Takeshi*; Iimura, Hideki; Ito, Yuta*; Kubo, Toshiyuki*; Matsuo, Yukari*; et al.

Nuclear Instruments and Methods in Physics Research B, 295, p.1 - 10, 2013/01

 Times Cited Count:21 Percentile:83.85(Instruments & Instrumentation)

no abstracts in English

JAEA Reports

Extraction and separation of uranium from simulated uranium-containing liquid wastes of Ningyo-toge environmental engineering center

Mitamura, Hisayoshi; Naganawa, Hirochika; Nagano, Tetsushi; Yanase, Nobuyuki; Hanzawa, Yukiko; Shimojo, Kojiro; Matsubara, Tatsuo; Mita, Yutaka; Taki, Tomihiro; Murata, Masato

JAEA-Research 2008-113, 27 Pages, 2009/03

JAEA-Research-2008-113.pdf:31.84MB

An effective mass processing equipment using solvent extraction method, named "emulsion flow extractor," is the most promising apparatus for removal and recovery of uranium from liquid waste originated from decontamination of uranium-contaminated fluoride waste in the uranium conversion test facility and of used gas centrifuges in the uranium enrichment facility at Ningyo-toge environmental engineering center. Prior to application of the emulsion flow extractor for actual uranium-containing liquid waste, properties of some phosphorous extractants for extraction and separation of uranium and constituents from simulated liquid wastes were examined through batch tests. These preliminary tests revealed that D2EHPA would be a promising candidate for extractant used for treatment of the actual uranium-containing liquid wastes, and that the extractants with a surfactant like AOT would not be useful.

JAEA Reports

Alpha radioactivity measurement technology with ionized air type measurement; Applicability evaluation to verification of the clearance level

Mita, Yutaka; Matsumura, Toshihiro; Yokoyama, Kaoru; Sugitsue, Noritake

JAEA-Technology 2008-061, 35 Pages, 2008/10

JAEA-Technology-2008-061.pdf:3.87MB

In Ningyo-toge Environmental Engineering Center. The equipments and radioactive waste which were contaminated with uranium are generated so much in future dismantling stage. In our plan, some of equipments and radioactive waste are decontamination to a clearance level, and cut down on decommission and disposal expense. This plan needs the alpha-rays measurement technology of the very low level. We think that ionized Air transfer measurement technology is promising as of clearance verification technology. The ionized Air transfer measurement technology applied to the Ionized Air Type Measurement can measure alpha radioactivity of a very low level. Moreover, as compared with a direct survey, there is the merit which can be measured in a short time. However ionized Air transfer measurement technology is new technology. Therefore, there is almost no measurement track record. Furthermore, the date about the influence of a background, a detection limit, measurement performance, and reliability is insufficient. So, this measurement test estimated applicability as clearance level verification of an Ionized Air Type Measurement.

JAEA Reports

Development of fuel microspheres fabrication by the external gelation process

Tomita, Yutaka; Morihira, Masayuki; Tamaki, Yoshihisa*; Nishimura, Kazuhisa*; Shoji, Shuichi*; Kihara, Yoshiyuki; Kase, Takeshi; Koizumi, Tsutomu

JAEA-Research 2006-088, 95 Pages, 2007/01

JAEA-Research-2006-088.pdf:23.02MB

JAEA has developed sphere-pac fuels in the feasibility study on commercialized FBR cycle systems as one of the candidates for low decontamination TRU fuels. Optimization of the fabrication condition for coarse spheres, development of an improved external gelation process, and examination of peculiar problems for the low decontamination fuel were carried out in Phase II. The results are shown as follows. (1) Fabrication condition of coarse spheres was optimized. (2) Feasibility of the improved external gelation process was confirmed. (3) Rare earth elements did not bring any problem for the characteristic of spheres and fabrication condition. (4) Radiation resistant data of the feed solution was acquired. Results of tests show the feasibility of the external gelation process for the low decontamination TRU fuel microsphere fabrication.

Journal Articles

Fuel microsphere fabrication tests for sphere-pac fuel by the external gelation process

Tomita, Yutaka; Morihira, Masayuki; Kihara, Yoshiyuki; Tamaki, Yoshihisa*

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 4 Pages, 2005/10

High economic competitiveness and low environmental impact are required for advanced FBR cycle systems. Sphere-pac fuel has been considered as promising fuel systems, due to its inherent advantage in remote operation, dustfree fuel fabrication process and cost reduction. Japan Nuclear Cycle Development Institute (JNC) has been investigated the external gelation process for sphere-pac fuel. In this report, the result of the sphere fabrication test by the external gelation process is reported.

Journal Articles

Fabrication of Sphere-pac Fuel and Vipac Fuel for Irradiation Tests (Collaboration Project among JNC, PSI and NRG)

Tomita, Yutaka; Shigetome, Yoshiaki; Kihara, Yoshiyuki

Saikuru Kiko Giho, (24), p.1 - 10, 2004/00

JNC has carried out the joint research project with PSI in Switzerland and NRG in Netherlands.In this project, three types of fuel segments (sphere-pac segments, vipac segments and pellet segments) were fabricated by PSI. They have been irradiated under same irradiation condition to compare their performances in the High Flux Reactor. This report describes the fabrication of sphere-pac segments and vipac segments for irradiation tests.

JAEA Reports

Technology developments for the decommissioning of uranium fuel facilities and the treatments of uranium wastes at Ningyo-toge Environmental Engineering Center

Annen, Sotonori; Ishimori, Yuu; Ema, Akira; Takanobu, Osamu; Nagayasu, Takaaki; Mita, Yutaka

JNC TN6400 2003-001, 35 Pages, 2003/10

JNC-TN6400-2003-001.pdf:2.78MB

Technology developments for the decommissioning of uranium fuel facilities and the treatments of uranium wastes are one of the current main projects in the Ningyo-toge Environmental Engineering Center of the Japan Nuclear Cycle Development Institute (JNC Ningyo-toge). In order to carry out the project reasonably and safely, all techniques from decommissioning to waste treatment should be unified systematically. Thus, the JNC Ningyo-toge is aiming at the establishment of a 'decommissioning engineering'. This booklet illustrates the decommissioning engineering, especially four engineering elements; that is, a removal technology for uranium compounds, a decommissioning technology of the centrifuges, an application of CaF2 precipitate and a decommissioning engineering system.

75 (Records 1-20 displayed on this page)