Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kizu, Kaname; Tsuchiya, Katsuhiko; Shimada, Katsuhiro; Ando, Toshinari*; Hishinuma, Yoshimitsu*; Koizumi, Norikiyo; Matsukawa, Makoto; Miura, Yushi*; Nishimura, Arata*; Okuno, Kiyoshi; et al.
Fusion Engineering and Design, 82(5-14), p.1493 - 1499, 2007/10
Times Cited Count:3 Percentile:25.42(Nuclear Science & Technology)no abstracts in English
Ninomiya, Hiromasa; Akiba, Masato; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hayashi, Nobuhiko; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Inoue, Nobuyuki; et al.
Journal of the Korean Physical Society, 49, p.S428 - S432, 2006/12
To contribute DEMO and ITER, the design to modify the present JT-60U into superconducting coil machine, named National Centralized Tokamak (NCT), is being progressed under nationwide collaborations in Japan. Mission, design and strategy of this NCT program is summarized.
Matsukawa, Makoto; Tamai, Hiroshi; Fujita, Takaaki; Kizu, Kaname; Sakurai, Shinji; Tsuchiya, Katsuhiko; Kurita, Genichi; Morioka, Atsuhiko; Ando, Toshinari; Miura, Yushi
IEEE Transactions on Applied Superconductivity, 16(2), p.914 - 917, 2006/06
Times Cited Count:4 Percentile:29.18(Engineering, Electrical & Electronic)no abstracts in English
Kizu, Kaname; Tsuchiya, Katsuhiko; Shimada, Katsuhiro; Ando, Toshinari*; Hishinuma, Yoshimitsu*; Koizumi, Norikiyo; Matsukawa, Makoto; Miura, Yushi*; Nishimura, Arata*; Okuno, Kiyoshi; et al.
IEEE Transactions on Applied Superconductivity, 16(2), p.872 - 875, 2006/06
Times Cited Count:1 Percentile:11.94(Engineering, Electrical & Electronic)no abstracts in English
Kikuchi, Mitsuru; Tamai, Hiroshi; Matsukawa, Makoto; Fujita, Takaaki; Takase, Yuichi*; Sakurai, Shinji; Kizu, Kaname; Tsuchiya, Katsuhiko; Kurita, Genichi; Morioka, Atsuhiko; et al.
Nuclear Fusion, 46(3), p.S29 - S38, 2006/03
Times Cited Count:13 Percentile:41.56(Physics, Fluids & Plasmas)The National Centralized Tokamak (NCT) facility program is a domestic research program for advanced tokamak research to succeed JT-60U incorporating Japanese university accomplishments. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility and mobility is pursued in aspect ratio and shape controllability, feedback control of resistive wall modes, wide current and pressure profile control capability for the demonstration of the high-b steady state.
Tsuchiya, Katsuhiko; Akiba, Masato; Azechi, Hiroshi*; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; et al.
Fusion Engineering and Design, 81(8-14), p.1599 - 1605, 2006/02
Times Cited Count:1 Percentile:9.91(Nuclear Science & Technology)no abstracts in English
Tamai, Hiroshi; Akiba, Masato; Azechi, Hiroshi*; Fujita, Takaaki; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; Hosogane, Nobuyuki; Ichimura, Makoto*; et al.
Nuclear Fusion, 45(12), p.1676 - 1683, 2005/12
Times Cited Count:15 Percentile:45.37(Physics, Fluids & Plasmas)Design studies are shown on the National Centralized Tokamak facility. The machine design is carried out to investigate the capability for the flexibility in aspect ratio and shape controllability for the demonstration of the high-beta steady state operation with nation-wide collaboration, in parallel with ITER towards DEMO. Two designs are proposed and assessed with respect to the physics requirements such as confinement, stability, current drive, divertor, and energetic particle confinement. The operation range in the aspect ratio and the plasma shape is widely enhanced in consistent with the sufficient divertor pumping. Evaluations of the plasma performance towards the determination of machine design are presented.
Ando, Toshinari*; Kizu, Kaname; Miura, Yushi*; Tsuchiya, Katsuhiko; Matsukawa, Makoto; Tamai, Hiroshi; Ishida, Shinichi; Koizumi, Norikiyo; Okuno, Kiyoshi
Fusion Engineering and Design, 75-79, p.99 - 103, 2005/11
Times Cited Count:1 Percentile:10.41(Nuclear Science & Technology)no abstracts in English
Kizu, Kaname; Miura, Yushi*; Tsuchiya, Katsuhiko; Ando, Toshinari*; Koizumi, Norikiyo; Matsui, Kunihiro*; Sakasai, Akira; Tamai, Hiroshi; Matsukawa, Makoto; Ishida, Shinichi; et al.
Nuclear Fusion, 45(11), p.1302 - 1308, 2005/11
Times Cited Count:4 Percentile:14.20(Physics, Fluids & Plasmas)no abstracts in English
Matsukawa, Makoto; Miura, Yushi; Shimada, Katsuhiro; Terakado, Tsunehisa; Okano, Jun; Isono, Takaaki; Nunoya, Yoshihiko
IEEE Transactions on Applied Superconductivity, 14(2), p.1414 - 1417, 2004/06
Times Cited Count:5 Percentile:32.88(Engineering, Electrical & Electronic)no abstracts in English
Tsuchiya, Katsuhiko; Kizu, Kaname; Miura, Yushi; Ando, Toshinari*; Sakasai, Akira; Matsukawa, Makoto; Tamai, Hiroshi; Ishida, Shinichi
IEEE Transactions on Applied Superconductivity, 14(2), p.1427 - 1430, 2004/06
Times Cited Count:1 Percentile:11.53(Engineering, Electrical & Electronic)no abstracts in English
Kizu, Kaname; Miura, Yushi; Tsuchiya, Katsuhiko; Koizumi, Norikiyo; Matsui, Kunihiro; Ando, Toshinari*; Hamada, Kazuya; Hara, Eiji*; Imahashi, Koichi*; Ishida, Shinichi; et al.
IEEE Transactions on Applied Superconductivity, 14(2), p.1535 - 1538, 2004/06
Times Cited Count:1 Percentile:11.53(Engineering, Electrical & Electronic)no abstracts in English
Tamai, Hiroshi; Kurita, Genichi; Matsukawa, Makoto; Urata, Kazuhiro*; Sakurai, Shinji; Tsuchiya, Katsuhiko; Morioka, Atsuhiko; Miura, Yushi; Kizu, Kaname; Kamada, Yutaka; et al.
Plasma Science and Technology, 6(3), p.2281 - 2285, 2004/06
Times Cited Count:0 Percentile:0.02(Physics, Fluids & Plasmas)High performance steady-state operation for JT-60SC are evaluated by the TOPICS analysis. 5 and bootstrap current fraction 86% is kept steady at I=1.5 MA, B=2 T by neutral beam power of 11 MW. The ERATO-J analysis shows that the external-kink mode with multiple toroidal mode numbers of n=1 and n=2 is stable at 5.5 at the average ratio of conducting wall radius to plasma minor radius of about 1.2 with the wall stabilisation effect. Resistive wall modes, induced by a close location of the wall to plasma, is expected to be suppressed by the active feedback stabilisation with a set of non-axisymmetric field coils behind the stabilising plates. Further optimisation for the high- accessibility by the plasma shaping is performed with the TOSCA analysis. The plasma shaping factor defined as S=(I/aB)q and strongly correlated to the plasma elongation and triangularity, is scanned from 4 to 6, which extends the availability of current and pressure profile control for the high performance plasma operation.
Tsuchiya, Katsuhiko; Kizu, Kaname; Miura, Yushi; Ando, Toshinari*; Nakajima, Hideo; Matsukawa, Makoto; Sakasai, Akira; Ishida, Shinichi
Fusion Engineering and Design, 70(2), p.131 - 140, 2004/02
Times Cited Count:3 Percentile:23.45(Nuclear Science & Technology)no abstracts in English
Sakasai, Akira; Ishida, Shinichi; Matsukawa, Makoto; Akino, Noboru; Ando, Toshinari*; Arai, Takashi; Ezato, Koichiro; Hamada, Kazuya; Ichige, Hisashi; Isono, Takaaki; et al.
Nuclear Fusion, 44(2), p.329 - 334, 2004/02
Times Cited Count:7 Percentile:22.85(Physics, Fluids & Plasmas)no abstracts in English
Sakasai, Akira; Ishida, Shinichi; Matsukawa, Makoto; Akino, Noboru; Ando, Toshinari*; Arai, Takashi; Ezato, Koichiro; Hamada, Kazuya; Ichige, Hisashi; Isono, Takaaki; et al.
Nuclear Fusion, 44(2), p.329 - 334, 2004/02
no abstracts in English
Tamai, Hiroshi; Matsukawa, Makoto; Kurita, Genichi; Hayashi, Nobuhiko; Urata, Kazuhiro*; Miura, Yushi; Kizu, Kaname; Tsuchiya, Katsuhiko; Morioka, Atsuhiko; Kudo, Yusuke; et al.
Plasma Science and Technology, 6(1), p.2141 - 2150, 2004/02
Times Cited Count:2 Percentile:6.49(Physics, Fluids & Plasmas)The dominant issue for the the modification program of JT-60 (JT-60SC) is to demonstrate the steady state reactor relevant plasma operation. Physics design on plasma parameters, operation scenarios, and the plasma control method are investigated for the achievement of high-. Engineering design and the R&D on the superconducting magnet coils, radiation shield, and vacuum vessel are performed. Recent progress in such physics and technology developments is presented.
Koizumi, Norikiyo; Ando, Toshinari*; Nakajima, Hideo; Matsui, Kunihiro; Sugimoto, Makoto; Takahashi, Yoshikazu; Okuno, Kiyoshi; Kizu, Kaname; Miura, Yushi; Tsuchiya, Katsuhiko; et al.
Proceedings of 20th IEEE/NPSS Symposium on Fusion Engineering (SOFE 2003), p.419 - 422, 2003/10
NbSn cConductors have already been developed for the TF coils operating at 13 T. However, the critical current of NbSn degrades due to a strain, and the amount of degradation becomes larger when the magnetic field increases, which set a limit of the NbSn application to a large coil at around 13 T. NbAl is considered, therefore, to be a next generation superconductor, since the critical current of NbAl is superior to that of NbSn and less sensitive against strains. JAERI has been developing NbAl conductor since 80s. As the first step, mass production technique of NbAl strands was established. In the second step, coil fabrication technique was developed and could successfully be charged to the nominal point of 13 T and 46 kA. From these advantages, JAERI is also promoting R&D activities to develop NbAl TF coils for JT-60SC. The prototype NbAl conductor has already been made. A D-shaped coil was fabricated and successfully tested. These activities constitute the basic approaches to develop TF coils whose operating field is expected to be around 16 T.
Matsukawa, Makoto; Ishida, Shinichi; Sakasai, Akira; Urata, Kazuhiro*; Senda, Ikuo*; Kurita, Genichi; Tamai, Hiroshi; Sakurai, Shinji; Miura, Yushi; Masaki, Kei; et al.
Fusion Engineering and Design, 66-68(1-4), p.703 - 708, 2003/09
Times Cited Count:2 Percentile:18.89(Nuclear Science & Technology)no abstracts in English
Ishida, Shinichi; Abe, Katsunori*; Ando, Akira*; Chujo, T.*; Fujii, Tsuneyuki; Fujita, Takaaki; Goto, Seiichi*; Hanada, Kazuaki*; Hatayama, Akiyoshi*; Hino, Tomoaki*; et al.
Nuclear Fusion, 43(7), p.606 - 613, 2003/07
no abstracts in English