Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.
Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12
Ninomiya, Kazuhiko*; Kubo, Kenya*; Inagaki, Makoto*; Yoshida, Go*; Takeshita, Soshi*; Tampo, Motonobu*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Miyake, Yasuhiro*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 333(7), p.3445 - 3450, 2024/07
Times Cited Count:1 Percentile:37.73(Chemistry, Analytical)Ninomiya, Kazuhiko*; Kubo, Kenya*; Inagaki, Makoto*; Yoshida, Go*; Chiu, I.-H.; Kudo, Takuto*; Asari, Shunsuke*; Sentoku, Sawako*; Takeshita, Soshi*; Shimomura, Koichiro*; et al.
Scientific Reports (Internet), 14, p.1797_1 - 1797_8, 2024/01
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)The amount of C in steel, which is critical in determining its properties, is strongly influenced by steel production technology. We propose a novel method of quantifying the bulk C content in steel non-destructively using muons. This revolutionary method may be used not only in the quality control of steel in production, but also in analyzing precious steel archaeological artifacts. A negatively charged muon forms an atomic system owing to its negative charge, and is finally absorbed into the nucleus or decays to an electron. The lifetimes of muons differ significantly, depending on whether they are trapped by Fe or C atoms, and identifying the elemental content at the muon stoppage position is possible via muon lifetime measurements. The relationship between the muon capture probabilities of C/Fe and the elemental content of C exhibits a good linearity, and the C content in the steel may be quantitatively determined via muon lifetime measurements. Furthermore, by controlling the incident energies of the muons, they may be stopped in each layer of a stacked sample consisting of three types of steel plates with thicknesses of 0.5 mm, and we successfully determined the C contents in the range 0.20 - 1.03 wt% depth-selectively, without sample destruction.
Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.
Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.
Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08
Times Cited Count:20 Percentile:82.86(Optics)Abe, Mitsushi*; Bae, S.*; Beer, G.*; Bunce, G.*; Choi, H.*; Choi, S.*; Chung, M.*; da Silva, W.*; Eidelman, S.*; Finger, M.*; et al.
Progress of Theoretical and Experimental Physics (Internet), 2019(5), p.053C02_1 - 053C02_22, 2019/05
Times Cited Count:167 Percentile:99.36(Physics, Multidisciplinary)This paper introduces a new approach to measure the muon magnetic moment anomaly
and the muon electric dipole moment (EDM)
at the J-PARC muon facility. The goal of our experiment is to measure
and
using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon g-2 experiments with unprecedented quality of the storage magnetic field. Additional significant differences from the present experimental method include a factor of 1000 smaller transverse emittance of the muon beam (reaccelerated thermal muon beam), its efficient vertical injection into the solenoid, and tracking each decay positron from muon decay to obtain its momentum vector. The precision goal for
is a statistical uncertainty of 450 parts per billion (ppb), similar to the present experimental uncertainty, and a systematic uncertainty less than 70 ppb. The goal for EDM is a sensitivity of
e
cm.
Ninomiya, Kazuhiko*; Ito, Takashi; Higemoto, Wataru; Kawamura, Naritoshi*; Strasser, P.*; Nagatomo, Takashi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Kita, Makoto*; Shinohara, Atsushi*; et al.
Journal of Radioanalytical and Nuclear Chemistry, 319(3), p.767 - 773, 2019/03
Times Cited Count:12 Percentile:71.16(Chemistry, Analytical)Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:17 Percentile:98.70(Quantum Science & Technology)Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:4 Percentile:87.91(Physics, Atomic, Molecular & Chemical)Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:7 Percentile:89.02(Physics, Atomic, Molecular & Chemical)Tampo, Motonobu*; Hamada, Koji*; Kawamura, Naritoshi*; Inagaki, Makoto*; Ito, Takashi; Kojima, Kenji*; Kubo, Kenya*; Ninomiya, Kazuhiko*; Strasser, P.*; Yoshida, Go*; et al.
JPS Conference Proceedings (Internet), 8, p.036016_1 - 036016_6, 2015/09
Adachi, Taihei*; Ikedo, Yutaka*; Nishiyama, Kusuo*; Yabuuchi, Atsushi*; Nagatomo, Takashi*; Strasser, P.*; Ito, Takashi; Higemoto, Wataru; Kojima, Kenji*; Makimura, Shunsuke*; et al.
JPS Conference Proceedings (Internet), 8, p.036017_1 - 036017_4, 2015/09
Ninomiya, Kazuhiko*; Kubo, Kenya*; Nagatomo, Takashi*; Higemoto, Wataru; Ito, Takashi; Kawamura, Naritoshi*; Strasser, P.*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Suzuki, Takao*; et al.
Analytical Chemistry, 87(9), p.4597 - 4600, 2015/05
Times Cited Count:29 Percentile:69.77(Chemistry, Analytical)Iguchi, Masahide; Morimoto, Masaaki; Chida, Yutaka*; Hemmi, Tsutomu; Nakajima, Hideo; Nakahira, Masataka; Koizumi, Norikiyo; Yamamoto, Akio*; Miyake, Takashi*; Sawa, Naoki*
IEEE Transactions on Applied Superconductivity, 24(3), p.3801004_1 - 3801004_4, 2014/06
Times Cited Count:7 Percentile:37.57(Engineering, Electrical & Electronic)no abstracts in English
Ninomiya, Kazuhiko; Nagatomo, Takashi*; Kubo, Kenya*; Ito, Takashi; Higemoto, Wataru; Kita, Makoto*; Shinohara, Atsushi*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; et al.
Bulletin of the Chemical Society of Japan, 85(2), p.228 - 230, 2012/02
Times Cited Count:30 Percentile:61.47(Chemistry, Multidisciplinary)Elemental analysis of bulk materials can be performed by detecting the high-energy X-rays emitted from muonic atoms. Muon irradiation of standard bronze samples was performed to determine the muon capture probabilities for the elemental components from muonic X-ray spectra. Nondestructive elemental analysis of an ancient Chinese coin was also performed.
Ito, Takashi; Nakahara, Kazutaka*; Kawase, Masato; Fujimori, Hiroshi*; Kobayashi, Yasuo*; Higemoto, Wataru; Miyake, Yasuhiro*
Journal of Physics; Conference Series, 225, p.012022_1 - 012022_5, 2010/06
Times Cited Count:1 Percentile:48.96(Physics, Applied)The Experimental Physics and Industrial Control System (EPICS) provides software infrastructure and framework for building distributed control systems (DCS) to operate beam line devices. The DCS based on EPICS has been adopted by many accelerator facilities in the world, where reliability, maintainability, and scalability of the system have been demonstrated. This system is also used to operate the high energy proton accelerator in the Japan Proton Accelerator Research Complex (J-PARC). We here report on the EPICS-based remote control system developed for operating the decay muon beam line in J-PARC. Major functions of beam line devices, three bending magnets, eighteen quadrupole magnets, and four slits, are accessible via Ethernet from a graphical user interface composed of the Motif Editor and Display Manager (MEDM).
Ninomiya, Kazuhiko; Nagatomo, Takashi*; Kubo, Kenya*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Saito, Tsutomu*; Higemoto, Wataru
Journal of Physics; Conference Series, 225, p.012040_1 - 012040_4, 2010/06
Times Cited Count:17 Percentile:96.85(Physics, Applied)Muon irradiation and muonic X-ray detection can be applied to non-destructive elemental analysis. In this study, in order to develop the elemental analysis by muonic X-ray measurement we constructed a new X-ray measuring system in J-PARC muon facility. We performed muon irradiation for Tempo-koban (Japanese old coin) for test experiment of elemental analysis.
Miyake, Yasuhiro*; Shimomura, Koichiro*; Kawamura, Naritoshi*; Strasser, P.*; Makimura, Shunsuke*; Koda, Akihiro*; Fujimori, Hiroshi*; Nakahara, Kazutaka*; Takeshita, Soshi*; Kobayashi, Yasuo*; et al.
Journal of Physics; Conference Series, 225, p.012036_1 - 012036_7, 2010/06
Times Cited Count:11 Percentile:93.85(Physics, Applied)Strasser, P.*; Shimomura, Koichiro*; Koda, Akihiro*; Kawamura, Naritoshi*; Fujimori, Hiroshi*; Makimura, Shunsuke*; Kobayashi, Yasuo*; Nakahara, Kazutaka*; Kato, Mineo*; Takeshita, Soshi*; et al.
Journal of Physics; Conference Series, 225, p.012050_1 - 012050_8, 2010/06
Times Cited Count:14 Percentile:95.74(Physics, Applied)Higemoto, Wataru; Ito, Takashi; Ninomiya, Kazuhiko; Heffner, R.*; Shimomura, Koichiro*; Nishiyama, Kusuo*; Miyake, Yasuhiro*
Journal of Physics; Conference Series, 225, p.012012_1 - 012012_4, 2010/06
Times Cited Count:2 Percentile:65.38(Physics, Applied)The Japan Atomic Energy Agency (JAEA)-Advanced Science Research Center (ASRC) has developed experimental equipment at the J-PARC MLF muon science facility (MUSE) for muon spin rotation/relaxation experiments. We have extracted part of the muonbeam into a muon spectrometer constructed downstream from the Decay/Surface muon beam line. The current status of our project is discussed here.