Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 135

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a non-destructive depth-selective quantification method for sub-percent carbon contents in steel using negative muon lifetime analysis

Ninomiya, Kazuhiko*; Kubo, Kenya*; Inagaki, Makoto*; Yoshida, Go*; Chiu, I.-H. ; Kudo, Takuto*; Asari, Shunsuke*; Sentoku, Sawako*; Takeshita, Soshi*; Shimomura, Koichiro*; et al.

Scientific Reports (Internet), 14, p.1797_1 - 1797_8, 2024/01

The amount of C in steel, which is critical in determining its properties, is strongly influenced by steel production technology. We propose a novel method of quantifying the bulk C content in steel non-destructively using muons. This revolutionary method may be used not only in the quality control of steel in production, but also in analyzing precious steel archaeological artifacts. A negatively charged muon forms an atomic system owing to its negative charge, and is finally absorbed into the nucleus or decays to an electron. The lifetimes of muons differ significantly, depending on whether they are trapped by Fe or C atoms, and identifying the elemental content at the muon stoppage position is possible via muon lifetime measurements. The relationship between the muon capture probabilities of C/Fe and the elemental content of C exhibits a good linearity, and the C content in the steel may be quantitatively determined via muon lifetime measurements. Furthermore, by controlling the incident energies of the muons, they may be stopped in each layer of a stacked sample consisting of three types of steel plates with thicknesses of 0.5 mm, and we successfully determined the C contents in the range 0.20 - 1.03 wt% depth-selectively, without sample destruction.

Journal Articles

Impact of the ground-state 4${it f}$ symmetry for anisotropic ${it cf}$ hybridization in the heavy-fermion superconductor CeNi$$_{2}$$Ge$$_{2}$$

Fujiwara, Hidenori*; Nakatani, Yasuhiro*; Aratani, Hidekazu*; Kanai, Yuina*; Yamagami, Kohei*; Hamamoto, Satoru*; Kiss, Takayuki*; Yamasaki, Atsushi*; Higashiya, Atsushi*; Imada, Shin*; et al.

Physical Review B, 108(16), p.165121_1 - 165121_10, 2023/10

Journal Articles

Non-destructive elemental analysis of lunar meteorites using a negative muon beam

Chiu, I.-H. ; Terada, Kentaro*; Osawa, Takahito; Park, C.*; Takeshita, Soshi*; Miyake, Yasuhiro*; Ninomiya, Kazuhiko*

Meteoritics & Planetary Science, 58(9), p.1333 - 1344, 2023/09

Journal Articles

Study on measurement method of degree of difference in validation of numerical analysis for decay heat removal in sodium-cooled fast reactor

Tanaka, Masaaki; Miyake, Yasuhiro*; Ezure, Toshiki; Hamase, Erina

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The numerical analysis model for the computational fluid dynamics (CFD) code for the design study is developed to evaluate the thermal-hydraulics in the core under the core-plenum interaction (CPI) during the decay heat removal using the dipped type direct heat exchanger (D-DHX). To judge the adequacy of the numerical results for a validation study with the sodium experiment results conducted at PLANDTL-2 facility, the degree of difference (DoD) between the numerical and experimental results must be measured by using the area validation metrics (AVM). Through the examinations, the applicability of the AVM and MAVM based on the p-box method was confirmed.

Journal Articles

Development of nondestructive elemental analysis system for Hayabusa2 samples using muonic X-rays

Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.

ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04

The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.

Journal Articles

Non-destructive elemental analysis of lunar materials with negative muon beam at J-PARC

Chiu, I.-H. ; Terada, Kentaro*; Osawa, Takahito; Park, C.*; Takeshita, Soshi*; Miyake, Yasuhiro*; Ninomiya, Kazuhiko*

Journal of Physics; Conference Series, 2462, p.012004_1 - 012004_6, 2023/03

 Times Cited Count:0 Percentile:0.2

In the last decade, non-destructive elemental analysis using negative muon beams advanced significantly. This method can be used to determine the elemental composition of bulk materials without causing damage. In this study, we performed a negative muon irradiation experiment for a Northwest Africa 482 lunar meteorite (NWA482), which was installed in a stainless steel analysis chamber. The analysis chamber was filled with helium gas to suppress the background signals caused by air-scattering muons. The muonic X-rays from Al, Fe, Ca, Mg, Si, and O in the samples were detected using six high-purity germanium semiconductor detectors arranged around the analysis chamber. To correct the X-ray self-absorption effect of the samples, a Monte-Carlo simulation using Geant4 toolkit was used. Based on the quantitative analysis for muonic X-ray measurement with the correction application from the simulation, we successfully investigated the analytical sensitivity of each element in meteorites based on the NWA482 data.

Journal Articles

Present status of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.

Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03

Journal Articles

Development of reactor vessel thermal-hydraulic analysis method in natural circulation conditions with coarse-mesh subchannel CFD model

Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 12 Pages, 2022/09

To enhance the safety of sodium-cooled fast reactors, the natural circulation (NC) decay heat removal systems with a dipped-type direct heat exchanger (D-DHX) have been investigated. During the D-DHX operation, since the core-plenum interaction occurs, development of the reactor vessel model including the more model by using a computational fluid dynamics code (RV-CFD) is required. Previously, the CFD model based on the subchannel analysis was developed. In this study, to achieve much lower computational cost maintaining the prediction accuracy, the coarse-mesh subchannel CFD (CMSC) model has been developed and was incorporated into the core of RV-CFD. As a result of PLANDTL-1 test analysis, the RV-CFD with the CMSC model can reproduce the radial heat transfer under NC conditions.

Journal Articles

Core thermal-hydraulics analysis during dipped-type direct heat exchanger operation in natural circulation conditions

Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki

Mechanical Engineering Journal (Internet), 9(4), p.21-00438_1 - 21-00438_15, 2022/08

To enhance the safety of sodium-cooled fast reactors, a dipped-type direct heat exchanger (D-DHX) has been investigated in a natural circulation decay heat removal system. During the D-DHX operation, the core-plenum interactions occurs and the thermal-hydraulics in the reactor vessel (RV) is complicated, the establishment of thermal-hydraulic analysis model in the RV for computational fluid dynamics code (RV-CFD) is required to simulate the thermal stratification in the upper plenum and thermal-hydraulics in the core. In this study, in terms of using RV-CFD for design study, the subchannel CFD model with low computational cost was adopted to the core of RV-CFD and the numerical simulation was carried out in comparison with the measured data in the sodium test facility named PLANDTL-1. As the result, the calculated sodium temperature in the core had good agreement with the experimental result and the applicability of the RV-CFD for the core-plenum interactions was confirmed.

Journal Articles

Investigation on natural circulation for decay heat removal in reactor vessel of sodium-cooled fast reactor

Aizawa, Kosuke; Tsuji, Mitsuyo; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*; Nakane, Shigeru*; Ishida, Katsuji*

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 10 Pages, 2022/04

In sodium-cooled fast reactors (SFRs), optimizing the design and operate decay heat removal systems (DHRSs) is important for safety enhancement against severe accidents that could lead to core melting. The natural circulation phenomena in a reactor vessel during operating a DHRS were clarified by conducting water experiments using a 1:10 scale experimental facility (PHEASANT) simulating the reactor vessel of loop-type SFRs. In this study, we investigated the natural circulation phenomena under conditions of operating the dipped-type DHX and RVACS using the results of temperature and particle image velocimetry (PIV) measurements, respectively. Furthermore, the effects of temperature fluctuation on the PIV measurement were quantitatively evaluated.

Journal Articles

Design for detecting recycling muon after muon-catalyzed fusion reaction in solid hydrogen isotope target

Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09

 Times Cited Count:3 Percentile:47.54(Nuclear Science & Technology)

A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 $$mu$$s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion ($$mu$$CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after $$mu$$CF reaction.

Journal Articles

Time evolution calculation of muon catalysed fusion; Emission of recycling muons from a two-layer hydrogen film

Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08

 Times Cited Count:3 Percentile:47.54(Nuclear Science & Technology)

A muon ($$mu$$) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by $$mu$$ and form a muonic hydrogen molecular ion, dt$$mu$$. Due to the short inter-nuclear distance of dt$$mu$$, the nuclear fusion, d +t$$rightarrow alpha$$ + n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion ($$mu$$CF). Recently, the interest on $$mu$$CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of $$mu$$CF in a two-layered hydrogen isotope target.

Journal Articles

Dynamical response of transition-edge sensor microcalorimeters to a pulsed charged-particle beam

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I.-H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

IEEE Transactions on Applied Superconductivity, 31(5), p.2101704_1 - 2101704_4, 2021/08

 Times Cited Count:1 Percentile:11.71(Engineering, Electrical & Electronic)

A superconducting transition-edge sensor (TES) microcalorimeter is an ideal X-ray detector for experiments at accelerator facilities because of good energy resolution and high efficiency. To study the performance of the TES detector with a high-intensity pulsed charged-particle beam, we measured X-ray spectra with a pulsed muon beam at the Japan Proton Accelerator Research Complex (J-PARC) in Japan. We found substantial temporal shifts of the X-ray energy correlated with the arrival time of the pulsed muon beam, which was reasonably explained by pulse pileup due to the incidence of energetic particles from the initial pulsed beam.

Journal Articles

Rabi-oscillation spectroscopy of the hyperfine structure of muonium atoms

Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.

Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08

 Times Cited Count:12 Percentile:84.06(Optics)

Journal Articles

Core thermal-hydraulic analysis during dipped-type direct heat exchanger operation in natural circulation conditions

Hamase, Erina; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki; Miyake, Yasuhiro*; Imai, Yasutomo*

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 10 Pages, 2021/08

To enhance the safety of sodium-cooled fast reactors, a dipped-type direct heat exchanger (D-DHX) has been investigated in a natural circulation decay heat removal system. During the D-DHX operation, the core-plenum interactions occurs, therefore, a thermal-hydraulic analysis model in the reactor vessel for computational fluid dynamics code (RV-CFD model) is necessarily required. In this study, the application of the subchannel analysis method for subassemblies to the RV-CFD model was attempted to reduce the calculation costs. Analysis results were compared to the experimental data obtained in the sodium experimental apparatus PLANDTL-1. As the result, the behavior of cold sodium into the simulated core was well grasped and the calculated sodium temperature in the core had good agreement with the experimental result. The applicability of the RV-CFD model was confirmed.

Journal Articles

Deexcitation dynamics of muonic atoms revealed by high-precision spectroscopy of electronic $$K$$ X rays

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I. H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

Physical Review Letters, 127(5), p.053001_1 - 053001_7, 2021/07

 Times Cited Count:9 Percentile:78.48(Physics, Multidisciplinary)

We observed electronic $$K$$X rays emitted from muonic iron atoms using a superconducting transition-edge-type sensor microcalorimeter. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic $$K$$$$alpha$$ and $$K$$$$beta$$ X rays together with the hypersatellite $$K$$$$alpha$$ X rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the $$L$$-shell electrons, accompanied by electron side-feeding. Assisted by a simulation, this data clearly reveals the electronic $$K$$- and $$L$$-shell hole production and their temporal evolution during the muon cascade process.

Journal Articles

Development of negative muonium ion source for muon acceleration

Kitamura, Ryo; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kim, B.*; Kondo, Yasuhiro; Mibe, Tsutomu*; et al.

Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03

 Times Cited Count:1 Percentile:19.67(Physics, Nuclear)

A negative muonium ion (Mu$$^{-}$$) source using an aluminum foil target was developed as a low-energy muon source. An experiment to produce Mu$$^{-}$$ ions was conducted to evaluate the performance of the Mu$$^{-}$$ ion source. The measured event rate of Mu$$^{-}$$ ions was $$(1.7 pm 0.3) times 10^{-3}$$ Mu$$^{-}$$/s when the event rate of the incident muon beam was $$1.3times10^{6}$$/s. The formation probability, defined as the ratio of the Mu$$^{-}$$ ions to the incident muons on the Al target, was $$(1.1 pm 0.2(textrm{stat.})^{-0.0}_{+0.1}(textrm{syst.})) times10^{-6}$$. This Mu$$^{-}$$ ion source boosted the development of the muon accelerator, and the practicality of this low-energy muon source obtained using a relatively simple apparatus was demonstrated.

Journal Articles

Study on cooling process in a reactor vessel of sodium-cooled fast reactor under severe accident; Velocity measurement experiments simulating operation of decay heat removal systems

Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08

The water experiments using a 1/10 scale experimental apparatus simulating the reactor vessel of SFR were conducted to investigate the natural circulation phenomena in a reactor vessel. In this paper, the natural circulation flow field in the reactor vessel was measured by the Particle Image Velocimetry (PIV) method. The PIV measurement was carried out under the operation of the dipped-type direct heat exchanger (DHX) installed in the upper plenum when 20% of the core fuel fell to the lower plenum and accumulated on the core catcher. From the results of PIV measurement, it was quantitatively confirmed that the upward flow occurred at the center region of the lower and upper plenums. In addition, the downward flows were confirmed near the reactor vessel wall in the upper plenum and through outermost layer of the simulated core in the lower plenum. Moreover, the relationship between the temperature field and the velocity field was investigated in order to understand the natural circulation phenomenon in the reactor vessel. From the above results, it was confirmed that the natural circulation cooling path was established under the dipped-type DHX operation.

Journal Articles

Impact of the angle of incidence on negative muon-induced SEU cross sections of 65-nm Bulk and FDSOI SRAMs

Liao, W.*; Hashimoto, Masanori*; Manabe, Seiya*; Watanabe, Yukinobu*; Abe, Shinichiro; Tampo, Motonobu*; Takeshita, Soshi*; Miyake, Yasuhiro*

IEEE Transactions on Nuclear Science, 67(7), p.1566 - 1572, 2020/07

 Times Cited Count:0 Percentile:0.01(Engineering, Electrical & Electronic)

Muon-induced single event upset (SEU) is predicted to increase with technology scaling. The angle of incidence of terrestrial muons is not always perpendicular to the chip surface. Consequently, the impact of the angle of incidence of muons on SEUs should be evaluated. This study conducts negative muon irradiation tests on bulk SRAM and FDSOI SRAM at two angles of incidence: 0 degree (vertical) and 45 degree (tilted). The tilted incidence drifts the muon energy peak to a higher energy. Moreover, the SEU characteristics (i.e., such as the voltage dependences of the SEU cross sections and multiple cells upset patterns) between the vertical and tilted incidences are similar.

Journal Articles

Measurement of single-event upsets in 65-nm SRAMs under irradiation of spallation neutrons at J-PARC MLF

Kuroda, Junya*; Manabe, Seiya*; Watanabe, Yukinobu*; Ito, Kojiro*; Liao, W.*; Hashimoto, Masanori*; Abe, Shinichiro; Harada, Masahide; Oikawa, Kenichi; Miyake, Yasuhiro*

IEEE Transactions on Nuclear Science, 67(7), p.1599 - 1605, 2020/07

 Times Cited Count:2 Percentile:46.37(Engineering, Electrical & Electronic)

Soft errors induced by terrestrial radiation in semiconductor devices have been of concern from the viewpoint of their reliability. Generally, to evaluate the soft error rates (SERs), neutron irradiation tests are performed at neutron facility. We have performed SER measurement for the 65-nm bulk SRAM and the FDSOI SRAM at RCNP in Osaka University and CYRIC in Tohoku University. In this study, we performed SER measurement for the same devices at BL10 in J-PARC MLF. The increasing rate of SER by reducing the supply voltage at J-PARC BL10 is larger than those obtained at RCNP and CYRIC. From PHITS simulation, the cause of this difference can be explained by the influence of the protons generated by neutron elastic scattering with hydrogen atoms in the package resin.

135 (Records 1-20 displayed on this page)