検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 8 件中 1件目~8件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

報告書

ウラン廃棄物を対象とした非破壊測定装置の運用実績; 続報

長沼 政喜; 小原 義之; 宮本 泰徳*; 村下 達也*; 牧田 彰典*; 野廣 哲也*

JAEA-Technology 2014-012, 11 Pages, 2014/06

JAEA-Technology-2014-012.pdf:1.06MB

日本原子力研究開発機構人形峠環境技術センターでは、平成14年まで、ウラン鉱石からウランを抽出し製錬・転換・濃縮して原子炉の燃料とするための研究開発、および使用済み燃料を再処理して回収したウランを転換・再濃縮する技術開発を行ってきた。この間に発生した放射性廃棄物は、ドラム缶に密封した状態で廃棄物貯蔵庫に保管しているが、平成12年までに発生した廃棄物に関する廃棄物管理情報に統一性がなかった。平成10年頃、主要核物質取扱施設の核物質不明量が保障措置上の課題として国際原子力機関に指摘された。このため、平成12年にQ2低レベル廃棄物ドラム缶測定装置(Q2)を導入し、ウラン量測定を行ってきた。平成19年にQ2に用いている解析システムをOS2システムからwindowsシステムに変更した。変更によって性能は向上したが、OS2システムによって得られた定量値とwindowsシステムによって得られた定量値に差異が生じた。OS2システムで測定したドラム缶をwindowsシステムで再測定すべきか検討したが、現実的に困難と考えられた。今回OS2システムとwindowsシステムのデータを解析し、ウラン量の補正を行う計算方法を検討した。

論文

Role of the electron temperature in the current decay during disruption in JT-60U

柴田 欣秀; 諫山 明彦; 松永 剛; 河野 康則; 宮本 斉児*; Lukash, V.*; Khayrutdinov, R.*; JT-60チーム

Plasma and Fusion Research (Internet), 9(Sp.2), p.3402084_1 - 3402084_5, 2014/06

トカマク装置におけるディスラプション現象ではプラズマ電流が急激に減少する電流クエンチが存在する。この電流クエンチ時にはプラズマ電流の減衰率に比例して真空容器等に電磁力が発生するため、プラズマ電流の減衰を抑制する必要がある。今までの研究においては電流クエンチ初期では電子温度分布の変化が電流減衰時間を決定していることが明らかにされている。本研究では電流クエンチ初期以降のプラズマ電流の減衰に電子温度が与える影響を調べるため、ディスラプションコードDINAを用いて電流クエンチ全体のシミュレーションを実施した。電流クエンチの初期は計測された電子温度分布を、初期以降は仮定した電子温度分布を用いて計算を行った。電子温度が計測できている最後の時刻以降は変化しないと仮定した場合、計測されたプラズマ電流値と近い時間変化が得られた。しかし、電流クエンチ初期以降では電子温度は計測限界値以下まで減少しているため、今回用いた仮定は実際の状況とは異なる。また、プラズマ断面積の振る舞いも実際に評価したものとは異なっていた。プラズマ電流の減少は様々なパラメータが関与するため、電子温度分布の影響を切り分ける必要がある。DINAコードを使用して様々な電子温度モデルで計算することにより、電子温度がプラズマ電流の減衰に与える影響を調査した結果を発表する。

論文

The Effect of the electron temperature and current density profiles on the plasma current decay in JT-60U disruptions

柴田 欣秀; 諫山 明彦; 宮本 斉児*; 河上 翔*; 渡邊 清政*; 松永 剛; 河野 康則; Lukash, V.*; Khayrutdinov, R.*; JT-60チーム

Plasma Physics and Controlled Fusion, 56(4), p.045008_1 - 045008_8, 2014/04

 被引用回数:2 パーセンタイル:15.56(Physics, Fluids & Plasmas)

JT-60Uのディスラプションにおいて、電流クエンチ初期のプラズマ電流の減衰をディスラプションシミュレーションコード(DINA)と計測された電子温度分布を用いて計算した。電流減衰時間が短い放電では、熱クエンチ直後の電子温度分布は既にピークしており、電流クエンチ中にあまり変化しなかった。一方、電流減衰時間が長い放電では、熱クエンチ直後の電子温度分布は電流減衰時間が短い放電に比べて広がりを持っており、電流クエンチ中に電子温度分布の収縮が観測された。そのような放電では、プラズマ外部インダクタンスはほとんど変化しないが、プラズマ内部インダクタンスの増加がDINAコードの計算でも観測された。一連の計算により、プラズマ内部インダクタンスの増加は、周辺領域の電子温度が減少し、プラズマ中心に電流が拡散することにより発生していることが分かった。また、本研究ではDINAコードを用いることにより、プラズマ周辺部の電子温度の加熱を用いることによりプラズマ電流の減衰時間を長くする方法を提案した。

報告書

大強度陽子加速器施設における放射線安全管理設備設計上の基本的考え方

宮本 幸博; 池野 香一; 秋山 茂則*; 原田 康典

JAERI-Tech 2002-086, 43 Pages, 2002/11

JAERI-Tech-2002-086.pdf:5.7MB

大強度陽子加速器施設の放射線防護上の特徴と、放射線安全管理設備を設計するうえでの基本的な考え方についてまとめた。大強度陽子加速器施設は、世界最高強度の高エネルギー陽子加速器を中核とした大規模複合施設であり、施設固有の特徴を多く有している。本報告では、大強度陽子加速器施設の特徴を考慮のうえ、整備すべき放射線安全管理設備の仕様について議論した。

報告書

SPring-8における高エネルギー加速器の放射線管理の現状と問題点

宮本 幸博; 植田 久男; 原田 康典

JAERI-Tech 98-039, 44 Pages, 1998/09

JAERI-Tech-98-039.pdf:2.21MB

SPring-8における高エネルギー加速器施設の放射線管理の現状と問題点をまとめた。第3世代放射光施設であるSPring-8においては、放射線管理を行う上で、高エネルギー大型加速器特有の問題点が多い。本報告では、パルス状放射線のモニタリング技術、低エネルギー及び高エネルギー放射線のモニタリング技術について現状と問題点を記述するとともに、放射化の問題、電磁波ノイズの問題等について議論した。

口頭

デイスラプションコードを用いたJT-60Uのネオンガスパフディスラプション解析

河上 翔*; 大野 哲靖*; 渡邊 清政*; 柴田 欣秀; 岡本 征晃*; 宮本 斉児; 諫山 明彦; 杉原 正芳*; 河野 康則; Lukash, V. E.*; et al.

no journal, , 

JT-60Uの大量ネオンガスパフによるディスラプション実験において、電流減衰の初期段階の内部インダクタンス$$ell_i$$の増加が電流減衰時間の値に影響を及ぼすことが以前実験的に検証されたが、物理機構は十分解明されていなかった。本研究では、2次元軸対称シミュレーションコードDINAを用いることにより、ディスラプション中の電子温度分布が$$ell_i$$の時間変化に与える影響を解析した。まず、電子温度分布を空間一定とした場合、$$ell_i$$は実験での観測とは逆に時間的に減少した。次に、実験時に得られた電子温度分布を用いて計算した場合、$$ell_i$$は時間的にほぼ一定となった。このことは、電子温度の分布を考慮することで$$ell_i$$を実験結果を再現する方向に近づけることができるものの、これだけでは不十分であることを示唆している。今回の計算では計測の困難さなどの理由から空間一定としているパラメータがあるが、これらの分布も$$ell_i$$の時間変化に影響を及ぼしている可能性がある。

口頭

JT-60Uにおける電流クエンチ時のプラズマ電流の振る舞いに関する研究

柴田 欣秀; 諫山 明彦; 宮本 斉児; 松永 剛; 河野 康則; 杉原 正芳*

no journal, , 

ディスラプション時に発生する電磁力はプラズマ電流の減衰時間に反比例して大きくなるため、電流減衰時間の評価が重要となる。今までの著者らの研究により電流減衰時間はプラズマ電流密度分布の時間変化で決定されていることが判明している。電流密度分布は電流拡散により決定され、電流拡散は電子温度分布の振る舞いに非常に影響される。本研究では電子温度計測とさまざまな電流減衰時間の比較が行うことができるJT-60Uで発生したディスラプション(高ブートストラップ電流割合実験)において電子温度分布が電流減衰時間に与える影響について調査した。計測された電子温度分布の振る舞いと電流減衰時間を比較したところ、ディスラプション中は非常に中心にピークした電子温度分布をしており、分布の幅の時間変化(減少)が大きい放電ほど電流密度分布のピーク化、電流減衰時間が早いことが判明した。電流密度分布がどのよう変化するのかを調べるために、ディスラプションシミュレーションコード(DINA)を用いて放電を再現したところ、規格化小半径で0.5ぐらいまで10eVという低い電子温度が存在すれば、周辺部に局所的な電流密度分布のピークが発生し、それがプラズマ内部に移動することにより実験で観測された内部インダクタンスの増加、プラズマ電流の減少が再現できることが判明した。また、電流減衰時間の早い放電では電子温度分布の時間変化が電流密度分布のピーク化に影響することも計算により確認した。

口頭

Analysis of current quench induced by the massive neon gas-puff in JT-60U using DINA code

柴田 欣秀; 諫山 明彦; 松永 剛; 河野 康則; 宮本 斉児*; Lukash, V. E.*; Khayrutdinov, R.*

no journal, , 

JT-60Uのディスラプション実験において、プラズマ電流の減衰をディスラプションシミュレーションコード(DINA)と計測された電子温度分布を用いて計算した。本研究では電子温度が数百eVの分布を持つ電流クエンチ初期と、電子温度が急激に減少するミニコラプス発生後のプラズマ電流を解析した。電流クエンチ初期の解析では、電流減衰時間が違う放電で電子温度の振る舞いが異なっていた。電流減衰時間が短い放電では、熱クエンチ直後の電子温度分布は既にピークしており、電流クエンチ中にあまり変化しなかった。しかし、電子温度が非常にピークした分布であるため、プラズマへの急激な電流拡散が発生し、プラズマインダクタンスが大きく増加してプラズマ電流が早く減衰している。一方、電流減衰時間が長い放電では、熱クエンチ直後の電子温度分布は電流減衰時間が短い放電に比べて広がりを持っており、電流クエンチ中に電子温度分布の収縮が観測された。その電子温度の収縮によりプラズマ電流は内部へ拡散するが、最終的な電子温度分布は早い電流減衰に比べて幅広いため、プラズマインダクタンスの変化は小さく、電流減衰時間が長くなっていることがDINAの計算により分かった。電子温度が急激に減少するミニコラプス発生後については、そのように低い電子温度(100eV以下)ではプラズマ抵抗によりプラズマ電流が減衰することがわかった。

8 件中 1件目~8件目を表示
  • 1