Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sato, Yuji; Miyamoto, Yuta; Awatani, Yuto; Yamamoto, Kosuke; Hatakeyama, Takumi
JAEA-Review 2023-002, 59 Pages, 2023/08
"Fugen Decommissioning Engineering Center", in planning and carrying out our decommissioning technical development, organizes "Technical special committee on Fugen decommissioning" which consists of the members well-informed, aiming to make good use of Fugen as a place for technological development which is opened domestic and international, as the central place in research and development base of Fukui prefecture, and to utilize the outcome in our decommissioning to the technical development effectively. This report consists of presentation paper are "Achievements and Considerations for Sampling and Analysis of Reactor Core Components", "Treatment of liquid scintillator waste liquid" and "Results and issues of rationalization of decontamination related to the clearance and considerations related to surface contamination monitoring" which is presented in the 39th Technical Special Committee on Fugen Decommissioning.
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.108 - 113, 2022/11
Automated Particle Measurement (APM) is the first measurement of environmental sample for safeguard purpose. APM tells us the number of particles in sample, their enrichment and their location. Precision and accuracy of APM is easily affected by particle condition. We have investigated how influential baking temperature in sample preparation are for uranium secondary ion quantity, uranium hydride generation and particle crystallinity. Our experimental results showed that baking temperature of 800C reduced uranium secondary ion quantity to 33% compared with baking at 350
C. Uranium hydride generation ratio of the sample baked at 850
C was also 4 times higher than the sample baked at 350
C. Baking at 850
C raised only crystallinity of uranium particles. Baking sample at too high temperature caused less uranium secondary ion generation and much more uranium hydride generation. It made precision and accuracy of APM worse. In our experiment, baking at 350
C is suitable for uranium particles in the safeguards sample.
Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.154 - 158, 2022/11
Precise determination of minor U isotopes (U and
U) of particles from the safeguard environmental samples is powerful method for detecting the undeclared nuclear activities. In this study, preparation method of U particle was examined to utilize for the minor U isotope determination. The porous silica particles were used as the particle matrix and lutetium was mixed to the impregnation solution as U impregnation indicator for the particle picking. The result of the Scanning Electron Microscope indicated that the contacting the solution with Si particles overnight gently could produce the impregnated particles effectively rather than the mixing them with PFA stick.
Yomogida, Takumi; Kitatsuji, Yoshihiro; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.148 - 153, 2022/11
The Research Group for Safeguards Analytical Chemistry is currently developing a method to analyze the chemical state of uranium particles in environmental samples collected at nuclear facilities using micro-Raman spectroscopy. The chemical state of uranium particles in environmental samples can be partially oxidized by long-term exposure to air. It is necessary to develop a method to analyze the chemical state of the entire particle. In this study, uranium dioxide stored under atmospheric conditions was analyzed by micro-Raman mapping. The Raman spectra showed that uranium peroxide was locally present in the UO particle. The Raman peaks originating from the structure of UO
around 570 cm
and 1150 cm
could not be observed in the point analysis of the particle center. On the other hand, in mapping analysis, Raman peaks originating from the structure of UO
can be observed from the same particle, demonstrating that Raman mapping analysis is an effective method for analyzing the chemical state of the entire particle.
Mano, Akihiro; Imai, Ryuta*; Miyamoto, Yuhei*; Lu, K.; Katsuyama, Jinya; Li, Y.
International Journal of Pressure Vessels and Piping, 199, p.104700_1 - 104700_13, 2022/10
Times Cited Count:0 Percentile:0(Engineering, Multidisciplinary)Elastic-plastic analyses based on finite element methods are widely applied to simulate the nonlinear behaviors of materials. When the analysis is conducted by an implicit method, the stress values are generally updated with a time increment by using the so-called return mapping algorithm. This algorithm requires solving simultaneous nonlinear equations related to a constitutive model. In the present paper, we proposed a general method to reduce the number of equations in the return mapping algorithm based on the implicit function theorem. In addition, the proposed method was applied to the Gurson-Tvergaard-Needleman (GTN) model that considers the influence of damage due to nucleation and growth of microscopic void in materials in the simulation of the nonlinear behaviors. By using the GTN model with the proposed method, an elastic-plastic analysis was performed by the implicit method for a 4-point bending test of pipe with a through-wall crack. The numerical solution of the variation of the load-load line displacement from the analysis agreed with experimental result. Thus, we concluded that the proposed method is useful for simulating nonlinear behaviors, including void nucleation and growth in materials.
Tomita, Jumpei; Ozawa, Mayumi; Ohara, Yoshiyuki; Miyamoto, Yutaka
KEK Proceedings 2021-2, p.130 - 134, 2021/12
no abstracts in English
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2021-2, p.146 - 150, 2021/12
no abstracts in English
Miyamoto, Yuta; Uemura, Masaru*; Yoshikawa, Katsuhiro*; Ando, Seiji*
Reiwa-2-Nendo Koeki Zaidan Hojin Wakasawan Enerugi Kenkyu Senta kenkyu Nempo, 23, P. 40, 2021/10
no abstracts in English
Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Esaka, Fumitaka; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of Radioanalytical and Nuclear Chemistry, 328(1), p.103 - 111, 2021/04
Times Cited Count:3 Percentile:56.29(Chemistry, Analytical)An analytical technique was developed to determine the age of uranium particles for safeguards. After the chemical separation of uranium and thorium, the Th/
U ratio was measured using single-collector inductively coupled plasma mass spectrometry and a
U-based reference material comprising a certain amount of
Th as a progeny nuclide of
U. The results allowed us to determine the purification age of two certified materials, i.e., U-850 and U-100, which was in good agreement with the reference purification age (61 y). Moreover, the age of a single U-850 particle was determined with a difference of -28 to 2 years from the reference date.
Hirahara, Toru*; Otrokov, M. M.*; Sasaki, Taisuke*; Sumida, Kazuki*; Tomohiro, Yuta*; Kusaka, Shotaro*; Okuyama, Yuma*; Ichinokura, Satoru*; Kobayashi, Masaki*; Takeda, Yukiharu; et al.
Nature Communications (Internet), 11, p.4821_1 - 4821_8, 2020/09
Times Cited Count:35 Percentile:93.21(Multidisciplinary Sciences)Iwai, Hiroki; Soejima, Goro; Takiya, Hiroaki; Awatani, Yuto; Aratani, Kenta; Miyamoto, Yuta; Tezuka, Masashi
Dekomisshoningu Giho, (61), p.12 - 19, 2020/03
FUGEN Decommissioning Engineering Center received the approval of the decommissioning plan in 2008, and we have been progressing the decommissioning. The first phase of decommissioning (Heavy Water and Other System Decontamination Period) finished in March 2018, and FUGEN has entered into the second phase of decommissioning (Reactor Periphery Facilities Dismantling Period). This report outlines the technology demonstration of sampling from reactor core structure of FUGEN that to prepare for reactor dismantlement in the third phase.
Miyamoto, Yuta; Iwai, Hiroki; Yoshikawa, Katsuhiro*
Wakasawan Enerugi Kenkyu Senta Homu Peji (Internet), 1 Pages, 2020/00
no abstracts in English
Miyamoto, Yutaka; Yasuda, Kenichiro
Journal of Nuclear and Radiochemical Sciences (Internet), 18, p.13 - 15, 2018/07
A sequential separation technique using an anion-exchange column developed in the previous works have the potential to completely separate picograms of Am from the lanthanides using mixtures of acetic acid, hydrochloric acid, and nitric acid as the eluents, without any functional ligands or special columns. This experimental result implies that ultra-trace actinides, including Am, Pu, U, and Th in environmental samples can be sequentially separated by combination of these mixed-media eluents and an anion exchange column.
Miyamoto, Yutaka; Yasuda, Kenichiro; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki
KEK Proceedings 2017-6, p.292 - 298, 2017/11
Our updated analytical techniques of ultra-trace plutonium in the IAEA environmental samples by ICP-MS were mentioned. Some careful techniques to accurately determine ultra-trace plutonium in the range of femto-grams to pico-grams were introduced. The uncertainties of analytical results were estimated according to the GUM concept. Our trials of determination of sub-femto grams americium in an environmental sample were also mentioned.
Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki
Talanta, 165, p.122 - 127, 2017/04
Times Cited Count:14 Percentile:52.33(Chemistry, Analytical)The isotope ratios of Pu/
Pu,
Pu/
Pu,
Pu/
Pu, and
Pu/
Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the
Pu/
Pu,
Pu/
Pu, and
Pu/
Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of uranium, plutonium and americium with UTEVA resins. Furthermore,
Pu/
Pu isotope ratios were able to be calculated by using both the
Pu/(
Pu+
Pu) activity ratios that had been measured through alpha spectrometry and the
Pu/
Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including
Pu/
Pu, in individual U-Pu mixed oxide particles.
Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki
Journal of Radioanalytical and Nuclear Chemistry, 309(1), p.303 - 308, 2016/07
Times Cited Count:2 Percentile:20.83(Chemistry, Analytical)The technique of sequential separation for U, Th, Pb, lanthanides and Pu using a single anion-exchange column and mixed acids media were developed. An automatic system utilizing a small column and pressurized gas was assembled for this sequential separation. By adjusting the eluent chemical composition for Pu separation, this separation technique has been achieved. Some pieces of tree ring sample were digested, and ultra-trace U and Pu in the samples were separated by this system. The analytical results of U and Pu measured by mass spectrometry will be mentioned.
Esaka, Fumitaka; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki
Journal of Radioanalytical and Nuclear Chemistry, 306(2), p.393 - 399, 2015/11
Times Cited Count:6 Percentile:47.56(Chemistry, Analytical)An analytical technique was developed by a combination of single particle dissolution, chemical separation of uranium, plutonium and americium with extraction chromatography using UTEVA resins and measurement with inductively coupled plasma mass spectrometry (ICP-MS). This method was applied to plutonium isotope ratio analysis of individual U-Pu particles with U/Pu ratios ranging from 1 to 70. Consequently, Pu/
Pu,
Pu/
Pu and
Pu/
Pu isotope ratios were successfully determined, while it was impossible to determine
Pu/
Pu ratios due to the high process blank values on m/z 238.
Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki
KEK Proceedings 2015-4, p.44 - 48, 2015/11
We developed an automatic system for sequential separation with an anion-exchange column to simply and quickly separate less than pico-grams of ultra-trace U, Th, Pb, the lanthanide, and Pu in an environmental sample without foreign contamination. The objective sequential separation of ultra-trace multi-elements succeeded by choosing the HCl-HF mixture based acetic acid for Th separation and the HCl-diluted HF mixture for Pu separation. The objective elements in a multi-elements mixture were completely separated for 6 h 15 min by use of the automatic system and the optimized separation condition.
Miyamoto, Yutaka; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki
Analytical and Bioanalytical Chemistry, 407(23), p.7165 - 7173, 2015/09
Times Cited Count:8 Percentile:32.77(Biochemical Research Methods)Age of individual uranium-plutonium mixed particles with various U/Pu atomic ratios were determined by inductively-coupled plasma mass spectrometry. Micron-sized particles were prepared from U and Pu certified reference materials. The Pu reference was stored for 4-6 years since the last purification. The Pu purification age was obtained from the Am/
Pu ratio which was calculated from the product of three measured ratios of Pu and Am isotopes in the eluted fractions. Am, U and Pu in a sample solution were sequentially separated a small anion-exchange column. The
Am/
Pu ratio was accurately determined by spiking pure
Am to the sample solution. The determined age of particles with various U/Pu ratios was in good agreement with the expected age with high accuracy and high precision.
Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki
Analyst, 140(13), p.4482 - 4488, 2015/07
Times Cited Count:6 Percentile:22.65(Chemistry, Analytical)Uranium, Thorium, lead, and the lanthanides were automatically and sequentially separated with a single anion-exchange column. This separation was achieved using eluents consisting of simple and highly pure acid mixture of HCl, HNO, acetic acid, and HF. This simple, automatic system is driven with pressurized nitrogen gas, and controlled by a computer program. For an evaluation examination, a reference powdered rock sample was separated by using this system. Abundances of objective elements, including 0.23 ng of lutetium, were accurately determined without corrections of chemical recovery yield or subtraction of processing blank. This separation technique saves time and effort for chemical processing, and it is useful for ultra-trace quantitative and isotopic analyses of elements in small environmental samples.