Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ichikawa, Tsubasa*; Hakoshima, Hideaki*; Inui, Koji*; Ito, Kosuke*; Matsuda, Ryo*; Mitarai, Kosuke*; Miyamoto, Koichi*; Mizukami, Wataru*; Mizuta, Kaoru*; Mori, Toshio*; et al.
Nature Reviews Physics (Internet), 6(6), p.345 - 347, 2024/06
Times Cited Count:2 Percentile:67.69(Physics, Applied)Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of the American Society for Mass Spectrometry, 35(6), p.1178 - 1183, 2024/05
Times Cited Count:0 Percentile:0.00(Biochemical Research Methods)A sensitive analytical technique was investigated in order to determine 10 order of
U/
U ratio in the sub-ng of uranium using a multi-collector ICP-MS. First, the solution volume was concentrated to one tenth to obtain higher intensities. Next, data acquisition was started from the beginning of the solution uptake and continued until all solution was exhausted. Taking advantage of multi-collector measurement, all data were used with excepting the portion affected by air mixing at the beginning and end of sample introduction. The isotope ratios were calculated from the total counts of each isotope. This technique was applied to U isotope standard (IRMM-184) to measure the 10
order of
U/
U ratio in the sub-ng of uranium. Measured values were in good agreement with the certified value within the uncertainity (
=2). The uncertainties obtained with this new technique (32% on average) were revised to be 10 times smaller than those obtained with the conventionalmethod.
Shizuma, Toshiyuki*; Omer, M.; Hayakawa, Takehito*; Minato, Futoshi*; Matsuba, Shunya*; Miyamoto, Shuji*; Shimizu, Noritaka*; Utsuno, Yutaka
Physical Review C, 109(1), p.014302_1 - 014302_7, 2024/01
Times Cited Count:3 Percentile:86.27(Physics, Nuclear)Utsunomiya, Hiroaki*; Goriely, S.*; Kimura, Masaaki*; Shimizu, Noritaka*; Utsuno, Yutaka; Tveten, G. M.*; Renstrm, T.*; Ariizumi, Takashi*; Miyamoto, Shuji*
Physical Review C, 109(1), p.014617_1 - 014617_7, 2024/01
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)no abstracts in English
Kaburagi, Masaaki; Miyamoto, Yuta; Mori, Norimasa; Iwai, Hiroki; Tezuka, Masashi; Kurosawa, Shunsuke*; Tagawa, Akihiro; Takasaki, Koji
Journal of Nuclear Science and Technology, 9 Pages, 2024/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Tomita, Ryohei; Tomita, Jumpei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
Hosha Kagaku, (48), p.1 - 15, 2023/09
Secondary Ion Mass Spectrometry (SIMS) is the method to detect secondary ions produced by the sputtering of primary ions. SIMS is one of effective method to measure isotopic composition of particles containing nuclear material in environmental sample for safeguards. We are a group member of the International Atomic Energy Agency (IAEA)'s network of analytical laboratories and have developed analytical techniques using SIMS and other mass spectrometers for nuclear safeguards. We will introduce the principle of SIMS and analytical techniques developed by our group to measure isotopic composition of uranium particles which having a particle diameter of micron order in environmental sample for safeguards.
Sato, Yuji; Miyamoto, Yuta; Awatani, Yuto; Yamamoto, Kosuke; Hatakeyama, Takumi
JAEA-Review 2023-002, 59 Pages, 2023/08
"Fugen Decommissioning Engineering Center", in planning and carrying out our decommissioning technical development, organizes "Technical special committee on Fugen decommissioning" which consists of the members well-informed, aiming to make good use of Fugen as a place for technological development which is opened domestic and international, as the central place in research and development base of Fukui prefecture, and to utilize the outcome in our decommissioning to the technical development effectively. This report consists of presentation paper are "Achievements and Considerations for Sampling and Analysis of Reactor Core Components", "Treatment of liquid scintillator waste liquid" and "Results and issues of rationalization of decontamination related to the clearance and considerations related to surface contamination monitoring" which is presented in the 39th Technical Special Committee on Fugen Decommissioning.
Miyamoto, Yutaka; Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Yasuda, Kenichiro
Isotope News, (786), p.22 - 25, 2023/04
no abstracts in English
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.108 - 113, 2022/11
Automated Particle Measurement (APM) is the first measurement of environmental sample for safeguard purpose. APM tells us the number of particles in sample, their enrichment and their location. Precision and accuracy of APM is easily affected by particle condition. We have investigated how influential baking temperature in sample preparation are for uranium secondary ion quantity, uranium hydride generation and particle crystallinity. Our experimental results showed that baking temperature of 800C reduced uranium secondary ion quantity to 33% compared with baking at 350
C. Uranium hydride generation ratio of the sample baked at 850
C was also 4 times higher than the sample baked at 350
C. Baking at 850
C raised only crystallinity of uranium particles. Baking sample at too high temperature caused less uranium secondary ion generation and much more uranium hydride generation. It made precision and accuracy of APM worse. In our experiment, baking at 350
C is suitable for uranium particles in the safeguards sample.
Yomogida, Takumi; Kitatsuji, Yoshihiro; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.148 - 153, 2022/11
The Research Group for Safeguards Analytical Chemistry is currently developing a method to analyze the chemical state of uranium particles in environmental samples collected at nuclear facilities using micro-Raman spectroscopy. The chemical state of uranium particles in environmental samples can be partially oxidized by long-term exposure to air. It is necessary to develop a method to analyze the chemical state of the entire particle. In this study, uranium dioxide stored under atmospheric conditions was analyzed by micro-Raman mapping. The Raman spectra showed that uranium peroxide was locally present in the UO particle. The Raman peaks originating from the structure of UO
around 570 cm
and 1150 cm
could not be observed in the point analysis of the particle center. On the other hand, in mapping analysis, Raman peaks originating from the structure of UO
can be observed from the same particle, demonstrating that Raman mapping analysis is an effective method for analyzing the chemical state of the entire particle.
Tomita, Jumpei; Tomita, Ryohei; Suzuki, Daisuke; Yasuda, Kenichiro; Miyamoto, Yutaka
KEK Proceedings 2022-2, p.154 - 158, 2022/11
Precise determination of minor U isotopes (U and
U) of particles from the safeguard environmental samples is powerful method for detecting the undeclared nuclear activities. In this study, preparation method of U particle was examined to utilize for the minor U isotope determination. The porous silica particles were used as the particle matrix and lutetium was mixed to the impregnation solution as U impregnation indicator for the particle picking. The result of the Scanning Electron Microscope indicated that the contacting the solution with Si particles overnight gently could produce the impregnated particles effectively rather than the mixing them with PFA stick.
Miyamoto, Yuta; Uemura, Masaru*; Igarashi, Masahiro*; Maeda, Hideo*
Reiwa-3-Nendo Koeki Zaidan Hojin Wakasawan Enerugi Kenkyu Senta kenkyu Nempo, 24, P. 36, 2022/11
The laser cutting of test pieces which simulated the structural materials of the Advanced Thermal Reactor "FUGEN" was performed at a water depth of 10 m. During the cutting process, we obtained data on the behavior of particulate matter such as dust and dross generated by underwater laser cutting, and changes in water quality related to the cleaning of water in test tank that became muddy after cutting.
Mano, Akihiro; Imai, Ryuta*; Miyamoto, Yuhei*; Lu, K.; Katsuyama, Jinya; Li, Y.
International Journal of Pressure Vessels and Piping, 199, p.104700_1 - 104700_13, 2022/10
Times Cited Count:2 Percentile:30.61(Engineering, Multidisciplinary)Elastic-plastic analyses based on finite element methods are widely applied to simulate the nonlinear behaviors of materials. When the analysis is conducted by an implicit method, the stress values are generally updated with a time increment by using the so-called return mapping algorithm. This algorithm requires solving simultaneous nonlinear equations related to a constitutive model. In the present paper, we proposed a general method to reduce the number of equations in the return mapping algorithm based on the implicit function theorem. In addition, the proposed method was applied to the Gurson-Tvergaard-Needleman (GTN) model that considers the influence of damage due to nucleation and growth of microscopic void in materials in the simulation of the nonlinear behaviors. By using the GTN model with the proposed method, an elastic-plastic analysis was performed by the implicit method for a 4-point bending test of pipe with a through-wall crack. The numerical solution of the variation of the load-load line displacement from the analysis agreed with experimental result. Thus, we concluded that the proposed method is useful for simulating nonlinear behaviors, including void nucleation and growth in materials.
Tomita, Ryohei; Tomita, Jumpei; Yomogida, Takumi; Suzuki, Daisuke; Yasuda, Kenichiro; Esaka, Fumitaka; Miyamoto, Yutaka
KEK Proceedings 2021-2, p.146 - 150, 2021/12
no abstracts in English
Tomita, Jumpei; Ozawa, Mayumi; Ohara, Yoshiyuki; Miyamoto, Yutaka
KEK Proceedings 2021-2, p.130 - 134, 2021/12
no abstracts in English
Miyamoto, Yuta; Uemura, Masaru*; Yoshikawa, Katsuhiro*; Ando, Seiji*
Reiwa-2-Nendo Koeki Zaidan Hojin Wakasawan Enerugi Kenkyu Senta kenkyu Nempo, 23, P. 40, 2021/10
no abstracts in English
Suzuki, Daisuke; Tomita, Ryohei; Tomita, Jumpei; Esaka, Fumitaka; Yasuda, Kenichiro; Miyamoto, Yutaka
Journal of Radioanalytical and Nuclear Chemistry, 328(1), p.103 - 111, 2021/04
Times Cited Count:6 Percentile:43.57(Chemistry, Analytical)An analytical technique was developed to determine the age of uranium particles for safeguards. After the chemical separation of uranium and thorium, the Th/
U ratio was measured using single-collector inductively coupled plasma mass spectrometry and a
U-based reference material comprising a certain amount of
Th as a progeny nuclide of
U. The results allowed us to determine the purification age of two certified materials, i.e., U-850 and U-100, which was in good agreement with the reference purification age (61 y). Moreover, the age of a single U-850 particle was determined with a difference of -28 to 2 years from the reference date.
Hirahara, Toru*; Otrokov, M. M.*; Sasaki, Taisuke*; Sumida, Kazuki*; Tomohiro, Yuta*; Kusaka, Shotaro*; Okuyama, Yuma*; Ichinokura, Satoru*; Kobayashi, Masaki*; Takeda, Yukiharu; et al.
Nature Communications (Internet), 11, p.4821_1 - 4821_8, 2020/09
Times Cited Count:48 Percentile:92.18(Multidisciplinary Sciences)Iwai, Hiroki; Soejima, Goro; Takiya, Hiroaki; Awatani, Yuto; Aratani, Kenta; Miyamoto, Yuta; Tezuka, Masashi
Dekomisshoningu Giho, (61), p.12 - 19, 2020/03
FUGEN Decommissioning Engineering Center received the approval of the decommissioning plan in 2008, and we have been progressing the decommissioning. The first phase of decommissioning (Heavy Water and Other System Decontamination Period) finished in March 2018, and FUGEN has entered into the second phase of decommissioning (Reactor Periphery Facilities Dismantling Period). This report outlines the technology demonstration of sampling from reactor core structure of FUGEN that to prepare for reactor dismantlement in the third phase.
Miyamoto, Yuta; Iwai, Hiroki; Yoshikawa, Katsuhiro*
Wakasawan Enerugi Kenkyu Senta Homu Peji (Internet), 1 Pages, 2020/00
no abstracts in English