Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*
Journal of Physics; Conference Series, 2687(7), p.072006_1 - 072006_6, 2024/01
The mitigation of heat loading is one of the important issues for beam instrumentation to measure the high-power proton beam. Recently, the highly-oriented pyrolytic graphite (HOPG) material was used for the target probe of the bunch-shape monitor at the front-end in the Japan Proton Accelerator Research Complex (J-PARC). Since the thermal conductivity of the HOPG is high, it is suitable to measure the beam profile under the condition of high heat loading. As an application of the HOPG, for example, the thin HOPG may be used as a substitutive material of the target wire for the transverse profile monitor such as the wire scanner monitor. The possibility of the HOPG target for the beam profile monitor is discussed from some results of the test experiment using the 3-MeV negative hydrogen ion beam at the test stand.
Kobayashi, Fuminori; Kamiya, Junichiro; Moriya, Katsuhiro; Miyao, Tomoaki*; Kotoku, Hirofumi*; Takano, Kazuhiro*
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.726 - 730, 2023/10
The L3BT beamline at J-PARC LINAC has beam dumps connected via vacuum partition windows to separate the ultra-high vacuum beamline from the low vacuum beam dumps. Roots pumps are used to evacuate each beam dump. The roots pump controllers have been installed away from the pump in the accelerator tunnel to avoid radiation damages. The special controllers, which have no inverter circuit inside, have been used to reduce the electrical noise on the beam loss monitors nearby. However, in this case, several problems have occurred such as the instability of the pumping performance. To solve such problems, the roots pump controller with the inverter circuit must be used after reducing the electrical noise. In this report, some countermeasures to reduce the electrical noise from the inverters were investigated. The noise reduction circuit was successfully optimized to the level where the beam loss monitors work unaffected.
Tamura, Jun; Futatsukawa, Kenta*; Kondo, Yasuhiro; Liu, Y.*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Okabe, Kota; Yoshimoto, Masahiro
Nuclear Instruments and Methods in Physics Research A, 1049, p.168033_1 - 168033_7, 2023/04
Times Cited Count:1 Percentile:63.33(Instruments & Instrumentation)The Japan Proton Accelerator Research Complex (J-PARC) linac is a high-intensity accelerator in which beam loss is a critical issue. In the J-PARC linac, H beams are accelerated to 191~MeV by a separated drift tube linac (SDTL) and subsequently to 400~MeV by an annular-ring coupled structure (ACS). Because there are more beam loss mechanisms in H linacs than in proton linacs, it is imperative to investigate the beam loss circumstances for beam loss mitigation. Electron-stripping phenomena, which generate uncontrollable H particles, are characteristic beam loss factors of H linacs. To clarify the beam loss causes in the J-PARC linac, a new diagnostic line was installed in the beam transport between the SDTL and ACS. In this diagnostic line, H particles were separated from the H beam, and the intensity profiles of the H particles were successfully measured by horizontally scanning a graphite plate in the range where H particles were distributed. By examining the intensity variation of the H particles with different residual pressure levels, we proved that half of the H particles in the SDTL section are generated by the residual gas stripping in the nominal beam operation of the J-PARC linac.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Oguri, Hidetomo
Physical Review Accelerators and Beams (Internet), 26(3), p.032802_1 - 032802_12, 2023/03
Times Cited Count:0 Percentile:0.02(Physics, Nuclear)A bunch-shape monitor (BSM) is a useful device for performing longitudinal beam tuning using the pointwise longitudinal phase distribution measured at selected points in the beam transportation. To measure the longitudinal phase distribution of a low-energy negative hydrogen (H) ion beam, highly oriented pyrolytic graphite (HOPG) was adopted for the secondary-electron-emission target to mitigate the thermal damage due to the high-intensity beam loading. The HOPG target enabled the measurement of the longitudinal phase distribution at the center of a 3-MeV H ion beam with a high peak current of about 50 mA. The longitudinal bunch width was measured using HOPG-BSM at the test stand, which was consistent with the beam simulation. The correlation measurement between the beam transverse and longitudinal planes was demonstrated using HOPG-BSM. The longitudinal Twiss and emittance measurement with the longitudinal Q-scan method was conducted using HOPG-BSM.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Miyao, Tomoaki*; Miura, Akihiko; Morishita, Takatoshi
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.212 - 214, 2023/01
In the J-PARC linac, the bunch-shape monitor (BSM) is developed to precisely and rapidly measure the longitudinal beam profile at the front-end, towards the improvement of the beam matching. The graphite target having the good strength to the high-power beam, has been introduced in order to resist the heat loading of the high-intensity beam. The resolution and other uncertainties were evaluated for the BSM. The longitudinal Twiss parameters and emittance were measured using the BSM and the IMPACT, which was the 3D particle-in-cell simulation code. The precision of the longitudinal emittance measurement was improved, by implementing uncertainties related to the BSM into the calculation. In this presentation, we will report a series of the measurement result, the method of the beam diagnostics with the BSM at the front-end, and the comparison between the measurement and the beam simulation.
Takahashi, Hiroki; Miyao, Tomoaki*; Hatakeyama, Shuichiro; Ishiyama, Tatsuya*
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.300 - 304, 2023/01
At J-PARC Linac, some beam dumps (BDs) are used for beam conditioning and study. A beam window is installed in the beamlines of each BD. A beam window protection system has been installed in the Linac 0-deg BD after a trouble with the beam window in 2018. However, the current system has not proved to be fully functional for future beam upgrade plan and etc. Then, we started to develop a beam window protection unit with a new function to measure the beam in real time and to inhibit the beam even in the middle of a beam pulse. In this paper, the details and performance of the developed beam window protection unit will be described.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.330 - 332, 2023/01
In the J-PARC linac, a new bunch-shape monitor (BSM) is developed to stably measure the high-intensity and low-energy H beam by improving the strength of the target probe for the heat loading. The new target probe is made of the graphite. The first measurement of the longitudinal beam profile has been realized with the BSM at the core region of the high-intensity beam. Since the beam profile can be measured with the new BSM at any transverse position thanks to the new target probe, we propose the advanced application of the beam diagnostics with the BSM. In this presentation, some new approaches of the beam diagnostics with the BSM; the transverse profile measurement using the secondary electrons and the beam current evaluation from the transverse profile measurement, are discussed beyond the original usage of the BSM.
Takano, Kazuhiro; Kotoku, Hirofumi*; Kobayashi, Fuminori*; Miyao, Tomoaki*; Moriya, Katsuhiro; Kamiya, Junichiro
JAEA-Technology 2021-017, 35 Pages, 2021/11
In J-PARC LINAC, the vacuum system of L3BT, which is a beam transport line connecting LINAC and 3GeV synchrotron, uses a turbo molecular pump and roots pump for rough exhaust and an ion pump for main exhaust. In addition, beam dumps are connected to the end of the L3BT at 0 degree, 30 degree, 90 degree, and 100 degree positions via vacuum partition windows. The roots pumps are used as the exhaust system for each beam dump. The roots pump controllers have been installed away from the pump in the accelerator tunnel to avoid radiation damages. Besides, the special controllers, which have no inverter circuit inside, have been used to reduce the electrical noise on the beam loss monitors nearby. However, using the special controller without inverters, several problems have occurred such as the instability or wide variability of the pumping speed. To solve such problems, the roots pump controller with the inverter circuit must be used after reducing the electrical noise. In this report, some countermeasures to reduce the electrical noise from the inverters were investigated. The noise reduction circuit was successfully optimized to the level where the beam loss monitors works unaffected.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo
JPS Conference Proceedings (Internet), 33, p.011012_1 - 011012_6, 2021/03
The new bunch shape monitor (BSM) is required to measure the bunch size of the high-intensity H beam with 3 MeV at the front-end section in the J-PARC linac. The carbon-nano tube wire and the graphene stick are good candidates for the target wire of the BSM, because these materials have the enough strength to detect the high-intensity beam. However, since the negative high voltage of more than a few kV should be applied to the wire in the BSM, the suppression of the discharge is the challenge to realize the new BSM. After the high-voltage test to investigate the effect of the discharge from the wire, the detection of the signal from the BSM was successful at the beam core with the peak current of 55 mA using the graphene stick. The preliminary result of the bunch-size measurement is reported in this presentation.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo
Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.251 - 253, 2020/09
A bunch-shape monitor (BSM) in the low-energy region is being developed in the J-PARC linac to accelerate the high-intensity proton beam with the low emittance. A highly-oriented pyrolytic graphite (HOPG) was introduced as the target of the BSM to mitigate the thermal loading. The stable measurement of the BSM was realized thanks to the HOPG target, while the tungsten target was broken by the thermal loading from the high-intensity beam. However, since the longitudinal distribution measured with the BSM using the HOPG target was wider than the expected one, the improvement of tuning parameters is necessary for the BSM. The BSM consists of an electron multiplier, a bending magnet, and a radio-frequency deflector, which should be tuned appropriately. Behavior of these components were investigated and tuned. The longitudinal distribution measured with the BSM after the tuning was consistent with the expected one.
Otani, Masashi*; Futatsukawa, Kenta*; Miyao, Tomoaki*; Liu, Y.*; Hirano, Koichiro; Kondo, Yasuhiro; Miura, Akihiko; Oguri, Hidetomo
Journal of Physics; Conference Series, 1350, p.012078_1 - 012078_5, 2019/12
Times Cited Count:1 Percentile:51.67(Physics, Particles & Fields)The Japan Proton Accelerator Research Complex (J-PARC) linac is operated with design peak current of 50 mA from 2018. For operation with such a high beam current, itis important to understand transverse and longitudinal beam properties especially in low-velocity region. A medium energy beam transport (MEBT1) line between the 3-MeV radio-frequency quadrupole linac (RFQ) and the 50-MeV drift-tube linac (DTL) is a 3-m-long transport line to match the beam to the DTL and produce a macro pulse configuration for a 3-GeV rapid-cycling synchrotron (RCS). In this paper, recent measurements and beam tuning results in MEBT1 will be presented.
Takahashi, Hiroki; Hatakeyama, Shuichiro; Sawabe, Yuki; Miyao, Tomoaki*; Ishiyama, Tatsuya*; Suzuki, Takahiro*
Journal of Physics; Conference Series, 1350, p.012142_1 - 012142_5, 2019/12
Times Cited Count:0 Percentile:0.06(Physics, Particles & Fields)At the J-PARC Linac, beam conditioning and study are performed using beam dumps (BDs). To be a partition with the high vacuum section, a beam window (material Ni, 0.38 mm thick, mirror-shape) is installed upstream of the BD along the beam line. Beams that can be accepted by the beam window are about 1/50 or less of rated beam according to thermal evaluation and experience. Therefore, when using a beam dump, it is necessary not to exceed this tolerance. In a 2018 beam study, the beam e that exceeded tolerance was incident on the 0-degree dump due to human error, and the beam window was cracked. Then, this has revealed the need for protection of the beam window by hardware. Therefore, based on the existing system for monitoring the per-hour beam amount, we began to develop a system to monitor one shot beam and one second beam amount. And, we succeeded in implementing a system that protects the beam window by monitoring the beam in a short time (one shot, and for one second). In addition, the performance tests using actual beams were performed, and it was confirmed that the developed system had sufficient performance requirements to protect the beam window.
Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.
Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12
Times Cited Count:1 Percentile:51.67(Physics, Particles & Fields)We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Moriya, Katsuhiro; Nemoto, Yasuo*; Oguri, Hidetomo
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.51 - 54, 2019/07
The longitudinal measurement and tuning at the beam transport after the RFQ are important to reduce the beam loss and the emittance growth in the J-PARC linac, when the high-intensity H beam of more than 60 mA is supplied. The new bunch shape monitor (BSM) using the carbon-nanotube (CNT) wire is necessary to measure the bunch shape of the high-intensity H beam with 3 MeV, because the CNT wire has a high-temperature tolerance and a small energy deposit. However, when the high voltage was applied to the CNT wire to extract the secondary electron derived, the discharge prevents the power supply from applying the voltage. Therefore, the discharge should be suppressed to measure the bunch shape with stability. Considering the characteristics of the CNT as the emitter, when the length of the CNT wire was short, the high voltage of -10 kV was applied to the CNT wire. The current status and future prospects of the BSM using the CNT wire are reported in this presentation.
Watanabe, Tamaki*; Toyama, Takeshi*; Hanamura, Kotoku*; Imao, Hiroshi*; Kamigaito, Osamu*; Kamoshida, Atsushi*; Kawachi, Toshihiko*; Koyama, Ryo*; Sakamoto, Naruhiko*; Fukunishi, Nobuhisa*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1105 - 1108, 2019/07
Upgrades for the RIKEN heavy-ion linac (RILAC) involving a new superconducting linac (SRILAC) are currently underway at the RIKEN radioactive isotope beam factory (RIBF). It is crucially important to develop nondestructive beam measurement diagnostics. We have developed a beam energy position monitor (BEPM) system which can measure not only the beam position but also the beam energy simultaneously by measuring the time of flight of the beam. We fabricated 11 BEPMs and completed the position calibration to obtain the sensitivity and offset for each BEPMs. The position accuracy has been achieved to be less than 0.1 mm by using the mapping measurement.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Moriya, Katsuhiro; Oguri, Hidetomo; Futatsukawa, Kenta*; Miyao, Tomoaki*; Otani, Masashi*; Kosaka, Satoshi*; et al.
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2543 - 2546, 2019/06
A bunch shape monitor (BSM) is one of the important instruments to measure the longitudinal phase space distribution. For example in the J-PARC linac, three BSMs using the tungsten wire are installed at the ACS section to measure the bunch shapes between the accelerating cavities. However, this conventional BSM is hard to measure the bunch shape of H beam with 3 MeV at the beam transport between the RFQ and DTL sections, because the wire is broken around the center region of the beam. The new BSM using the carbon-nano-tube (CNT) wire is being developed to be able to measure the bunch shape of the H beam with 3 MeV. The careful attention should be paid to apply the high voltage of 10 kV to the CNT wire. The several measures are taken to suppress the discharge from the wire and operate the CNT-BSM. This presentation reports the current status of the development and future prospective for the CNT-BSM.
Takahashi, Hiroki; Hatakeyama, Shuichiro; Sawabe, Yuki; Miyao, Tomoaki*; Ishiyama, Tatsuya*; Suzuki, Takahiro*
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.3886 - 3889, 2019/06
At the J-PARC Linac, beam conditioning and study are performed using beam dumps (BDs). To be a partition with the high vacuum section, a beam window (material Ni, 0.38 mm thick, mirror-shape) is installed upstream of the BD along the beam line. Beams that can be accepted by the beam window are about 1/50 or less of rated beam according to thermal evaluation and experience. Therefore, when using a beam dump, it is necessary not to exceed this tolerance. In a 2018 beam study, the beam e that exceeded tolerance was incident on the 0-degree dump due to human error, and the beam window was cracked. Then, this has revealed the need for protection of the beam window by hardware. Therefore, based on the existing system for monitoring the per-hour beam amount, we began to develop a system to monitor one shot beam and one second beam amount. And, we succeeded in implementing a system that protects the beam window by monitoring the beam in a short time (one shot, and for one second). In addition, the performance tests using actual beams were performed, and it was confirmed that the developed system had sufficient performance requirements to protect the beam window.
Hayashi, Naoki; Hatakeyama, Shuichiro; Miura, Akihiko; Yoshimoto, Masahiro; Futatsukawa, Kenta*; Miyao, Tomoaki*
Proceedings of 7th International Beam Instrumentation Conference (IBIC 2018) (Internet), p.219 - 223, 2019/01
J-PARC is a multi-purpose facility. Accelerator stability is the one of important issues for users of this facility. To realize stable operation, we must collect data on interlocked events and analyze these data to determine the reasons for the occurrence of such events. In J-PARC Linac, data of interlocked events have been recorded using several some beam loss monitors and current monitors, and these data have been are analyzed and classified. In J-PARC RCS, new instrumentation is being introduced to obtain beam position. We discuss the present status and future plans related to this subject.
Shinto, Katsuhiro; Shibata, Takanori*; Miura, Akihiko; Miyao, Tomoaki*; Wada, Motoi*
AIP Conference Proceedings 2011, p.080016_1 - 080016_3, 2018/09
Times Cited Count:6 Percentile:93.67(Physics, Applied)Moriya, Katsuhiro; Kawane, Yusuke*; Miura, Akihiko; Futatsukawa, Kenta*; Miyao, Tomoaki*
Journal of Physics; Conference Series, 1067, p.072009_1 - 072009_3, 2018/09
Times Cited Count:0 Percentile:0.11(Physics, Particles & Fields)no abstracts in English