Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Oka, Toshitaka; Okada, Shinji*; Sato, Motoyasu*
JJAP Conference Proceedings (Internet), 9, p.011003_1 - 011003_7, 2023/00
Muon catalyzed fusion (CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes. In the
CF reaction, muon transfer from deuteron to triton and muonic molecular formation are rate-limiting processes. In this work, we have investigated the role of resonance states of muonic molecule in the
CF which affects the muonic deuterium atom population. Solving simultaneous rate equations numerically by the fourth-order Runge-Kutta method, we determined the muonic molecular formation rate so that the number of fusion events reproduces a latest experimental result. It is revealed that the resonance states play a role to enhance the fusion rate by accelerating the de-excitation of the muonic atoms.
Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09
Times Cited Count:2 Percentile:25.87(Nuclear Science & Technology)A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion (
CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after
CF reaction.
Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08
Times Cited Count:3 Percentile:46.88(Nuclear Science & Technology)A muon () having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by
and form a muonic hydrogen molecular ion, dt
. Due to the short inter-nuclear distance of dt
, the nuclear fusion, d +t
+ n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion (
CF). Recently, the interest on
CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of
CF in a two-layered hydrogen isotope target.
Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
A muon () having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion (
CF) between deuteron (d) and triton (t). In this work, we have solved simultaneous reaction rate equations by the 4th-order Runge-Kutta method for the jointed
CF cycles in the two layers (H
/D
and D
/T
). The T
concentration to maximize the intensities of fusion neutrons and muons emitted to the vacuum will be discussed.
Natori, Hiroaki*; Doiuchi, Shogo*; Ishida, Katsuhiko*; Kino, Yasushi*; Miyake, Yasuhiro*; Miyashita, Konan*; Nakashima, Ryota*; Nagatani, Yukinori*; Nishimura, Shoichiro*; Oka, Toshitaka; et al.
no journal, ,
A muonic molecule which consists of muon and two hydrogen isotope nuclei (deuteron (d) or tritium (t)) decays immediately via nuclear fusion (CF) and the muon will be released as a recycling muon. We attempted to use these muons to develop the scanning muon microscope. In this work, we will report the detection of neutron which emits during the
CF reaction.
Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
Muon catalized fusion (CF) is expected to be a high-quality muon beam source for undestructive measurement and a monoenergetic neutron source. In this work, we attemped to observe a released muon after intermolecular nuclear reaction using muonic X-ray.
Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
Muon catalized fusion (CF) is expected to be a high-quality muon beam source for undestructive measurement and a monoenergetic neutron source. In this work, we discussed how to observe a kinetic energy distribution of a recycling muon emitted after
CF reaction.
Miyashita, Konan*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
To observe a kinetic energy distribution of a recycling muon emitted after CF reaction, it is necessary to guide the recycling muons to a detector. In this work, we simulated the muon transportation using PHITS code and designed an experimental system.
Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
The recycling muon emitted after the muon catalized fusion (CF) has a kinetic energy between a few keV to 10 keV. To observed the kinetic energy distribution of the recycling muon, we have to guide and inject muons to Ti foil, and measure the muonic X-ray. In this work, we utilized SIMION code to calculate the electric field and the trajectory of muons from deuteron target to Ti foil.
Miyashita, Konan*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
To measure the kinetic energy of a recycling muon, we discussed how to reduce the background radiation and the trajectory of the transported recycling muons by simulation code.
Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
To detect a recycling muon emitted after muon catalyzed fusion reaction, it is necessary to guide the recycling muons from the target to a detector in a low background area. In this work, we simulated the muon transportation using SIMONS and PHITS codes and designed an experimental system.
Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
A muon is one of elementary particles which is known to weight 207 times more than an electron. A nuclear fusion reaction occurs in a muonic molecule which consists of two hydrogen isotope nuclei and a muon because the muon binds more tightly than electron. Since the muon does not directly participate in the fusion reaction, the reaction is called muon catalyzed fusion (CF). The muon released after the reaction is called a "recycling muon", and maintains the molecular orbital information when the muonic molecule formed. Therefore, information of the muon wavefunction can be investigated by observing the energy distribution of the recycling muon. We will report the experimental setup for measuring the energy distribution of the recycling muons after the nuclear reaction.
Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
Muon catalyzed fusion (CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes, such as
or
. In this work, we have investigated the shape and characteristic of solid hydrogen isotope target.
Miyashita, Konan*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
Muon catalyzed fusion (CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes. In this work, we have designed the shape of the thermal shield to reduce the background noise.
Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
We are developing an experimental system to measure the kinetic energy distribution of regenerated muons emitted after muon catalytic nuclear reactions. The trajectory of the regenerated muon emitted from a solid hydrogen target, and the transport efficiency of the regenerated muon and its dependence on the emitted position are calculated/discussed using SIMION code.
Konishi, Ren*; Okutsu, Kenichi*; Kino, Yasushi*; Sasaki, Kyosuke*; Nakashima, Ryota*; Yamashita, Takuma*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; et al.
no journal, ,
Muon catalyzed fusion (CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes. In this work, we used PHITS code to simulate the behavior of the low-energy muon in a thin layer of the solid hydrogen.
Konishi, Ren*; Okutsu, Kenichi*; Kino, Yasushi*; Sasaki, Kyosuke*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; et al.
no journal, ,
When muons are injected into a deuterium thin film target, muon molecules are formed. The muons released after intramolecular fusion (recycling muons) are important for the development of slow muon beams. In this study, corresponding to an experiment in which recycling muons are transported using a coaxial transport tube, the energy distribution of scattered muons, muons after deceleration, and background radiation due to bremsstrahlung by decay electrons and neutrons are analyzed by numerical simulations.