Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Mesospheric ionization during substorm growth phase

Murase, Kiyoka*; Kataoka, Ryuho*; Nishiyama, Takanori*; Nishimura, Koji*; Hashimoto, Taishi*; Tanaka, Yoshimasa*; Kadokura, Akira*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Ogawa, Yasunobu*; et al.

Journal of Space Weather and Space Climate (Internet), 12, p.18_1 - 18_16, 2022/06

 Times Cited Count:1 Percentile:22.72(Astronomy & Astrophysics)

We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP event for which the most comprehensive dataset from ground-based and space-born instruments was available. The mesospheric ionization signature reached below 70 km altitude and continued for ~15 min until the substorm onset, as observed by the PANSY radar and imaging riometer at Syowa Station in the Antarctic region. We also used energetic electron flux observed by the Arase and POES 15 satellites as the input for the air-shower simulation code PHITS to quantitatively estimate the mesospheric ionization rate. Combining the cutting-edge observations and simulations, we shed new light on the space weather impact of the EEP events during geomagnetically quiet times, which is important to understand the possible link between the space environment and climate.

Journal Articles

Space weather benchmarks on Japanese society

Ishii, Mamoru*; Shiota, Daiko*; Tao, Chihiro*; Ebihara, Yusuke*; Fujiwara, Hitoshi*; Ishii, Takako*; Ichimoto, Kiyoshi*; Kataoka, Ryuho*; Koga, Kiyokazu*; Kubo, Yuki*; et al.

Earth, Planets and Space (Internet), 73(1), p.108_1 - 108_20, 2021/12

 Times Cited Count:8 Percentile:57.39(Geosciences, Multidisciplinary)

We surveyed the relationship between the scale of space weather events and their occurrence rate in Japan and we discussed the social impact of these phenomena during the Project for Solar-Terrestrial Environment Prediction (PSTEP). The information was compiled for domestic users of space weather forecasts for appropriate preparedness against space weather disasters. This paper gives a comprehensive summary of the survey, focusing on the fields of electricity, satellite operations, communication and broadcasting, satellite positioning usage, aviation, human space activity, and daily life on the Earth's surface, using the cutting-edge knowledge of space weather. Quantitative estimations of the economic impact of space weather events on electricity and aviation are also given.

Journal Articles

PSTEP: Project for solar-terrestrial environment prediction

Kusano, Kanya*; Ichimoto, Kiyoshi*; Ishii, Mamoru*; Miyoshi, Yoshizumi*; Yoden, Shigeo*; Akiyoshi, Hideharu*; Asai, Ayumi*; Ebihara, Yusuke*; Fujiwara, Hitoshi*; Goto, Tadanori*; et al.

Earth, Planets and Space (Internet), 73(1), p.159_1 - 159_29, 2021/12

 Times Cited Count:6 Percentile:51.19(Geosciences, Multidisciplinary)

The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.

Journal Articles

Transient ionization of the mesosphere during auroral breakup; Arase satellite and ground-based conjugate observations at Syowa Station

Kataoka, Ryuho*; Nishiyama, Takanori*; Tanaka, Yoshimasa*; Kadokura, Akira*; Uchida, Herbert Akihito*; Ebihara, Yusuke*; Ejiri, Mitsumu*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Sato, Kaoru*; et al.

Earth, Planets and Space (Internet), 71(1), p.9_1 - 9_10, 2019/12

 Times Cited Count:8 Percentile:40.25(Geosciences, Multidisciplinary)

Transient ionization of the mesosphere was detected at around 65 km altitude during the isolated auroral expansion occurred at 2221-2226 UT on June 30, 2017. A general-purpose Monte Carlo particle transport code PHITS suggested that significant ionization is possible in the middle atmosphere due to auroral X-rays from the auroral electrons of $$<$$10 keV.

Journal Articles

Nowcast and forecast of galactic cosmic ray (GCR) and solar energetic particle (SEP) fluxes in magnetosphere and ionosphere; Extension of WASAVIES to earth orbit

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Miyoshi, Yoshizumi*; Ueno, Haruka*; Nagamatsu, Aiko*

Journal of Space Weather and Space Climate (Internet), 9, p.A9_1 - A9_11, 2019/03

 Times Cited Count:7 Percentile:38.79(Astronomy & Astrophysics)

Real-time estimation of astronaut doses during solar particle events (SPE) is one of the most challenging tasks in cosmic-ray dosimetry. We therefore develop a new computational method that can nowcast the solar energetic particle (SEP) as well as galactic cosmic-ray (GCR) fluxes on any Earth orbit during a large SPE associating with ground level enhancement. It is an extended version of WArning System for AVIation Exposure to Solar Energetic Particle, WASAVIES. The extended version, called WASAVIES-EO, can calculate the GCR and SEP fluxes outside a satellite based on its two-line element data. Moreover, organ dose and dose-equivalent rates of astronauts in the International Space Station (ISS) can be estimated using the system, considering its shielding effect. The accuracy of WASAVIES-EO was validated based on the dose rates measured in ISS, as well as based on high-energy proton fluxes observed by POES satellites.

Journal Articles

Real time and automatic analysis program for WASAVIES; Warning system for aviation exposure to solar energetic particles

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Park, I.*; Miyoshi, Yoshizumi*

Space Weather, 16(7), p.924 - 936, 2018/07

 Times Cited Count:19 Percentile:69.84(Astronomy & Astrophysics)

A physics-based warning system of aviation exposure to solar energetic particles, WASAVIES, is improved to be capable of real-time and automatic analysis. In the improved system, the count rates of several neutron monitors (NM) at the ground level, as well as the proton fluxes measured by the GOES satellite are continuously downloaded at intervals of 5 min and used for determining the model parameters. The performance of WASAVIES is examined by analyzing the three major GLE events of the 21st century. A web-interface of WASAVIES is also developed and will be released in the near future through the public server of NICT.

Oral presentation

Radiation protection of humans in space and aviation; Current states and future needs on the warning system for aviation exposure to SEP (WASAVIES)

Sato, Tatsuhiko; Ishii, Mamoru*; Kataoka, Ryuho*; Kubo, Yuki*; Minoshima, Takashi*; Miyoshi, Yoshizumi*; Nagamatsu, Aiko*; Shiota, Daiko*; Takashima, Takeshi*; Yasuda, Hiroshi*

no journal, , 

Forecast of radiation doses for astronauts as well as aircrews due to the exposure to solar energetic particles (SEP) is one of the greatest challenges in space weather research. In last 5 years, we have developed a WArning System for AVIation Exposure to Solar energetic particles: WASAVIES. In this system, the SEP fluxes incident to the atmosphere are calculated by physics-based models, and they are converted to radiation doses using a database developed on the basis of air-shower simulation. However, it takes approximately 2.5 hours to determine the parameters used in the physics-based models after the detection of GLEs, and thus, the current WASAVIES cannot predict doses during the peak of GLEs. Therefore, we are trying to reduce the time for evaluating the parameters, as well as to develop a nowcast system for the radiation dose due to SEP exposure, under the framework of Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan. A brief outline of WASAVIES together with our future strategy will be presented at the meeting.

Oral presentation

Current states and future needs on the Warning System for Aviation Exposure to Solar Energetic Particle (WASAVIES)

Sato, Tatsuhiko; Kataoka, Ryuho*; Yasuda, Hiroshi*; Kubo, Yuki*; Ishii, Mamoru*; Miyake, Shoko*; Park, I.*; Miyoshi, Yoshizumi*

no journal, , 

Estimation of radiation doses for astronauts as well as aircrews due to the exposure to solar energetic particles (SEP) is one of the greatest challenges in space weather research. We are therefore developing a WArning System for AVIation Exposure to Solar energetic particle (WASAVIES), under the framework of Project for Solar-Terrestrial Environment Prediction (PSTEP). In the system, the SEP fluxes incident to the atmosphere are calculated by physics-based models. Thus, WASAVIES can estimate not only the current value but also time variation of the aircrew doses after a GLE event occurs. A brief outline of WASAVIES together with the status of on-going research subjects such as development of the automatic calculation algorithm will be presented at the meeting.

Oral presentation

Warning system for aviation exposure to solar energetic particle (WASAVIES)

Sato, Tatsuhiko; Kataoka, Ryuho*; Yasuda, Hiroshi*; Kubo, Yuki*; Ishii, Mamoru*; Miyake, Shoko*; Park, I.*; Miyoshi, Yoshizumi*

no journal, , 

Estimation of radiation doses for astronauts as well as aircrews due to the exposure to solar energetic particles (SEP) is one of the greatest challenges in space weather research. We are therefore developing a WArning System for AVIation Exposure to Solar energetic particle (WASAVIES), under the framework of Project for Solar-Terrestrial Environment Prediction (PSTEP). In the system, the radiation doses due to SEP exposure at flight altitudes are calculated on the basis of physics-based models and databases with four free parameters, which express the absolute value, power index, and time profiles of SEP fluxes near the sun, and the pitch angle incident to the magnetosphere. Thus, WASAVIES can estimate not only the current value but also time variation of the aircrew doses after a GLE event occurs. A brief outline of WASAVIES together with the status of on-going research subjects such as development of the web-based nowcast and forecast system will be presented at the meeting.

Oral presentation

WASAVIES: Warning system for aviation exposure to solar energetic particles

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Park, I.*; Miyoshi, Yoshizumi*

no journal, , 

A physics-based warning system for aviation exposure to solar energetic particles, WASAVIES, is developed for nowcasts and forecasts the radiation dose rates all over the world up to 24 h after the large solar flare onset. The performance of WASAVIES is examined by analyzing the three major GLE events of the 21st century. The accuracy of the calculated dose rates is well validated by the reproducibility of the count rates of several neutron monitors and GOES proton fluxes. A web-interface of WASAVIES is also developed and will be released in the near future through the public server of NICT.

Oral presentation

Current status of WASAVIES; Warning system for aviation exposure to solar energetic particles

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Park, I.*; Miyoshi, Yoshizumi*

no journal, , 

We are developing a physics-based warning system for aviation exposure to solar energetic particles, WASAVIES, under the framework of the PSTEP project in Japan. It can nowcast and forecast the radiation dose rates all over the world up to 24 h after the large solar flare onset. The performance of WASAVIES is examined by analyzing the three major GLE events of the 21st century. The accuracy of the calculated dose rates is well validated by the reproducibility of the count rates of several neutron monitors and GOES proton fluxes. A web-interface of WASAVIES is also developed and will be released in the near future through the public server of NICT.

Oral presentation

Real-time estimation of astronaut doses during large solar particle events based on WASAVIES

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Park, I.*; Miyoshi, Yoshizumi*; Ueno, Haruka*; et al.

no journal, , 

Real-time estimation of astronaut doses during solar particle events (SPE) is one of the most challenging tasks in cosmic-ray dosimetry. We therefore develop a new computational method that can nowcast the solar energetic particle (SEP) as well as galactic cosmic-ray (GCR) fluxes on any Earth orbit during a large SPE associating with ground level enhancement. It is an extended version of WArning System for AVIation Exposure to Solar Energetic Particle, WASAVIES. The detailed calculation procedures of WASAVIES-EO will be presented at the meeting, together with the results of its validation based on the experimental data measured in ISS during GLE60, 71 and 72.

Oral presentation

Recent improvement of WASAVIES; Warning system for aviation exposure to solar energetic particle

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Miyoshi, Yoshizumi*

no journal, , 

We are developing a physics-based warning system for aviation exposure to solar energetic particles, WASAVIES, under the framework of the PSTEP project in Japan. It can nowcast and forecast the radiation dose rates all over the world up to 24 h after the large solar flare onset. The performance of WASAVIES is examined by analyzing the three major GLE events of the 21st century. The accuracy of the calculated dose rates is well validated by the reproducibility of the count rates of several neutron monitors and GOES proton fluxes. In this presentation, we will explain details of the web-interface of WASAVIES, which will be released in the near future through the public server of NICT.

Oral presentation

Current status of WASAVIES; Warning system for aviation exposure to solar energetic particles

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Park, I.*; Miyoshi, Yoshizumi*

no journal, , 

We are developing a physics-based warning system for aviation exposure to solar energetic particles, WASAVIES, under the framework of the PSTEP project in Japan. It can nowcast and forecast the radiation dose rates all over the world up to 24 h after the large solar flare onset. The performance of WASAVIES is examined by analyzing the three major GLE events of the 21st century. The accuracy of the calculated dose rates is well validated by the reproducibility of the count rates of several neutron monitors and GOES proton fluxes. A web-interface of WASAVIES is also developed and will be released from March 2019 through the public server of NICT.

Oral presentation

WArning System for AVIation Exposure to Solar energetic Particle: WASAVIES

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Miyoshi, Yoshizumi*

no journal, , 

We are developing a physics-based warning system for aviation exposure to solar energetic particles, WASAVIES, under the framework of the PSTEP project in Japan. It can nowcast and forecast the radiation dose rates all over the world up to 24 h after the large solar flare onset. The performance of WASAVIES is examined by analyzing the three major GLE events of the 21st century. The accuracy of the calculated dose rates is well validated by the reproducibility of the count rates of several neutron monitors and GOES proton fluxes. A web-interface of WASAVIES was also developed and released via the public server of NICT.

15 (Records 1-15 displayed on this page)
  • 1