Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 333

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Commissioning of the next-generation LLRF control system for the Rapid Cycling Synchrotron of the Japan Proton Accelerator Research Complex

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Yamamoto, Masanobu; Okita, Hidefumi; Omori, Chihiro*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Nuclear Instruments and Methods in Physics Research A, 999, p.165211_1 - 165211_11, 2021/05

 Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)

The low level rf (LLRF) control system has key roles for the stable acceleration of the high intensity beam. The original LLRF control system for the RCS of J-PARC has been working nicely without major issues for more than ten years since the operation of the RCS started in 2007. Due to the obsolescence of the key digital devices, it is difficult to maintain the original system for a longer period, therefore we developed the next-generation LLRF control system. All of the LLRF functions of the new system were tested and commissioned. In this article, we describe the commissioning of two key functions, the phase feedback and the multiharmonic vector rf voltage control feedback for twelve cavities. The commissioning methodologies and beam test results are presented. The stable acceleration of the high intensity beam at the design intensity of $$8.3times 10^{13}$$ ppp is achieved. The next-generation LLRF control system has been successfully deployed and commissioned.

Journal Articles

Commissioning of Versatile Compact Neutron Diffractometer (VCND) at the B-3 beam port of Kyoto University Research Reactor (KUR)

Mori, Kazuhiro*; Okumura, Ryo*; Yoshino, Hirofumi*; Kanayama, Masaya*; Sato, Setsuo*; Oba, Yojiro; Iwase, Kenji*; Hiraka, Haruhiro*; Hino, Masahiro*; Sano, Tadafumi*; et al.

JPS Conference Proceedings (Internet), 33, p.011093_1 - 011093_6, 2021/03

no abstracts in English

Journal Articles

Operation experience of Tetrode vacuum tubes in J-PARC Ring RF system

Yamamoto, Masanobu; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Nomura, Masahiro; Omori, Chihiro*; Shimada, Taihei; Sugiyama, Yasuyuki*; Tamura, Fumihiko; Yoshii, Masahito*

JPS Conference Proceedings (Internet), 33, p.011022_1 - 011022_6, 2021/03

A Tetrode vacuum tubes (Thales TH589) are used in the J-PARC ring rf system. The operation has started in 2007, and the total operation time is more than 50,000 hours. There is no tube which reaches the end of life except an initial failure in the 3 GeV synchrotron. TH589 has a thoriated tungsten filament and it is carburized to suppress an evaporation of the thorium. The resistance of the filament decreases through the decarburization process after the filament operation has started. The tube constructor suggests that reduced filament voltage up to 10% compared with the rated value is effective to suppress the decarburization. However, the filament current increases even though the voltage is kept constant due to the resistance reduction, and it is observed that an increment of the power dissipation promotes the decarburization. This means that keeping the filament voltage constant is not enough; keeping the power dissipation constant is necessary to prolong the tube life time, and we employ a procedure to decrease the current regularly.

Journal Articles

Japanese population dose from natural radiation

Omori, Yasutaka*; Hosoda, Masahiro*; Takahashi, Fumiaki; Sanada, Tetsuya*; Hirao, Shigekazu*; Ono, Koji*; Furukawa, Masahide*

Journal of Radiological Protection, 40(3), p.R99 - R140, 2020/09

 Times Cited Count:6 Percentile:75.13(Environmental Sciences)

UNSCEAR and the Nuclear Safety Research Association report the annual effective doses from cosmic rays, terrestrial radiation, inhalation and ingestion from natural sources. In this study, radiation doses from natural radiation sources in Japan were reviewed with the latest knowledge and data. Total annual effective dose from cosmic-ray exposure can be evaluated as 0.29 mSv. The annual effective dose from external exposure to terrestrial radiation for Japanese population can be evaluated as 0.33 mSv using the data of nationwide survey by the National Institute of Radiological Sciences. The Japan Chemical Analysis Center (JCAC) performed the nationwide radon survey using a unified method for radon measurements in indoor, outdoor and workplace. The annual effective dose for radon inhalation was estimated using a current dose conversion factor, and the values were estimated to be 0.50 mSv. The annual effective dose from thoron was reported as 0.09 mSv by UNSCEAR and then the annual effective dose from inhalation can be described as 0.59 mSv. According to the report of large scale survey of foodstuff by JCAC, the effective dose from main radionuclides due to dietary intake can be evaluated to be 0.99 mSv. Finally, Japanese population dose from natural radiation can be assessed as 2.2 mSv which is near to the world average value of 2.4 mSv.

Journal Articles

Applying image recognition technology by convolutional neural networks to mountain plot images

Nomura, Masahiro; Tamura, Fumihiko; Shimada, Taihei; Yamamoto, Masanobu; Furusawa, Masashi*; Sugiyama, Yasuyuki*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Yoshii, Masahito*

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 67, 2020/09

Image recognition using a convolutional neural network (CNN) has been used in a wide range of fields and has produced excellent results. If this image recognition technology is used effectively, it should be possible to obtain information from an image equal to or more than the information that a person can obtain from an image. At J-PARC, researchers with specialized knowledge obtain beam information needed to adjust the equipment from an image called mountain plot. In this study, we applied the image recognition technology by using CNN to this mountain plot image, and tried to obtain the information about the beam necessary for adjustment. As a result, we were able to obtain more information than is currently available by using the image recognition technology. In the future, we plan to adjust the equipment based on the information actually obtained from the image recognition technology and confirm its effectiveness

Journal Articles

Benchmarking of longitudinal calculation code BLonD for Application to J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.674 - 678, 2020/09

Longitudinal beam simulation code BLonD (Beam Longitudinal Dynamics), which has been developed by CERN in recent years, is being used accelerator facilities around the world. BLonD can simulate longitudinal beam motion considering with wake voltage and space charge effect and is written by Python, which makes it highly readable and general-purpose code. We are currently conducting a benchmark of BLonD aiming at studying for further improvements of acceleration technology and stable operation of the J-PARC 3GeV synchrotron (RCS). The bunching factor, which express the longitudinal beam charge distribution, calculated by BLonD simulation reflected by the current 1MW beam operation parameters reproduce the experimental results well and the validity of BLonD for RCS longitudinal beam simulation was confirmed.

Journal Articles

Visualizing cation vacancies in Ce:Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$ scintillators by gamma-ray-induced positron annihilation lifetime spectroscopy

Fujimori, Kosuke*; Kitaura, Mamoru*; Taira, Yoshitaka*; Fujimoto, Masaki*; Zen, H.*; Watanabe, Shinta*; Kamada, Kei*; Okano, Yasuaki*; Kato, Masahiro*; Hosaka, Masahito*; et al.

Applied Physics Express, 13(8), p.085505_1 - 085505_4, 2020/08

 Times Cited Count:1 Percentile:27.27(Physics, Applied)

To clarify the existence of cation vacancies in Ce-doped Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$ (Ce:GAGG) scintillators, we performed gamma-ray-induced positron annihilation lifetime spectroscopy (GiPALS). GiPAL spectra of GAGG and Ce:GAGG comprised two exponential decay components, which were assigned to positron annihilation at bulk and defect states. By an analogy with Ce:Y$$_{3}$$Al$$_{5}$$O$$_{12}$$, the defect-related component was attributed to Al/Ga-O divacancy complexes. This component was weaker for Ce, Mg:GAGG, which correlated with the suppression of shallow electron traps responsible for phosphorescence. Oxygen vacancies were charge compensators for Al/Ga vacancies. The lifetime of the defect-related component was significantly changed by Mg co-doping. This was understood by considering aggregates of Mg$$^{2+}$$ ions at Al/Ga sites with oxygen vacancies, which resulted in the formation of vacancy clusters.

Journal Articles

Development of an external radiation dose estimation model for children returning to their homes in areas affected by the Fukushima Nuclear Accident

Mori, Airi; Takahara, Shogo; Yoshida, Hiroko*; Sanada, Yukihisa; Munakata, Masahiro

Health Physics, 117(6), p.606 - 617, 2019/12

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

Journal Articles

Development of a laser chipping technique combined with water jet for retrieval of fuel debris at Fukushima Daiichi Nuclear Power Station

Yamada, Tomonori; Takebe, Toshihiko*; Ishizuka, Ippei*; Daido, Hiroyuki*; Hanari, Toshihide; Shibata, Takuya; Omori, Shinya*; Kurosawa, Koichi*; Sasaki, Go*; Nakada, Masahiro*; et al.

Journal of Nuclear Science and Technology, 56(12), p.1171 - 1179, 2019/12

 Times Cited Count:1 Percentile:24.18(Nuclear Science & Technology)

We describe a new chipping technique combined with a water-jet technique as one of the candidate techniques for the retrieval of fuel debris and support structures as part of the decommissioning of the Fukushima Daiichi Nuclear Power Station. We performed proof-of-principle experiments to demonstrate the removal capability of metal parts, where we focused on the observation of removal processes from a metallic sample using a 5.5-kW continuous wave fiber laser combined with continuous and pulsed water jets.

Journal Articles

Simulations of beam loading compensation in a wideband accelerating cavity using a circuit simulator including a LLRF feedback control

Tamura, Fumihiko; Yamamoto, Masanobu; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Omori, Chihiro*; Shimada, Taihei; Nomura, Masahiro; Hasegawa, Katsushi*; Hara, Keigo*; Furusawa, Masashi*

Journal of Physics; Conference Series, 1350(1), p.012189_1 - 012189_7, 2019/12

 Times Cited Count:0 Percentile:0.07

Magnetic alloy cavities are employed in the J-PARC RCS to generate high accelerating voltages. The cavity, which is driven by a vacuum tube amplifier, has a wideband frequency response and the beam loading in the cavity is multiharmonic. Therefore, the tube must generate a multiharmonic output current. An LTspice circuit model is developed to analyze the vacuum tube operation and the compensation of the multiharmonic beam loading. The model includes the cavity, tube amplifier, beam current, and LLRF feedback control. The feedback control consists of the I/Q demodulator including low pass filters, PI control, and I/Q modulator. In this presentation, we present the implementation of the LLRF functions in the LTspice simulations. The preliminary simulation results are also presented. The simulations fairly agree with the beam test results.

Journal Articles

Multiharmonic vector rf voltage control for wideband cavities driven by vacuum tube amplifiers in a rapid cycling synchrotron

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Yamamoto, Masanobu; Omori, Chihiro*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; Hara, Keigo*; Furusawa, Masashi*

Physical Review Accelerators and Beams (Internet), 22(9), p.092001_1 - 092001_22, 2019/09

 Times Cited Count:2 Percentile:40.26(Physics, Nuclear)

Beam loading compensation in the rf cavities is a key for acceleration of high intensity beams in 3 GeV RCS of the J-PARC. Since we employ wideband magnetic alloy rf cavities for the J-PARC RCS and the wake voltage contains several harmonics, a multiharmonic beam loading compensation is required. The multiharmonic rf feedforward for the most important six harmonics is implemented in the existing low level rf (LLRF) control system, which has been working fairly well for acceleration of high intensity beams of up to 1 MW. However, we found the degradation of the performance for compensation of the feedforward with very high intensity beams. Therefore, a multiharmonic vector rf voltage control has been developed. The detail of system configuration, commissioning methodology, and beam test results using very high intensity beams are described. The beam loading by the 1 MW equivalent beam in the cavity is successfully compensated.

Journal Articles

Applying neural networks to investigations of the influence of weather conditions on the power consumption of J-PARC

Nomura, Masahiro; Tamura, Fumihiko; Shimada, Taihei; Yamamoto, Masanobu; Furusawa, Masashi*; Sugiyama, Yasuyuki*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Yoshii, Masahito*

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.258 - 261, 2019/07

In recent years, summer temperatures have tended to increase, so understanding the amount of power consumption in summer from weather information has become important in terms of contract power and power saving measures. The relationship between the amount of power consumption and weather conditions is that the accelerator facility has many cooling facilities, so it can be thought that the amount of power used to cool each device increases as the temperature and humidity increase. It seems that it has not been investigated specifically what kind of dependence there is. Therefore, considering the neural network as a kind of fitting function or a model of calculation, we investigated the influence of weather conditions on the power consumption. As a result, it was found that the power consumption of the accelerators mostly depends only on the temperature, and the electric power of Linac and RCS increases by about 1 MW when the temperature of Mito rises by 10$$^{circ}$$C.

Journal Articles

Vacuum tube operation analysis for 1.2 MW beam acceleration in J-PARC RCS

Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2017 - 2019, 2019/06

J-PARC RCS has successfully accelerated 1 MW proton beam, and we have considered acceleration with the next target being 1.2 MW. An issue for 1.2 MW beam acceleration is the rf system. The present anode power supply is limited by its output current, and the vacuum tube amplifier suffers from an unbalance of the anode voltage swing, arising from the combination of multi-harmonic rf driving and push-pull operation. We have investigated the mitigation of the maximum anode currents and unbalanced tubes by choosing appropriate circuit parameters of the rf cavity with tube amplifier. We describe the analysis results of the vacuum tube operation for 1.2 MW beam acceleration in the RCS.

Journal Articles

Investigation of removal factors of various materials inside houses after Nuclear Power Station Accident

Mori, Airi; Ishizaki, Azusa; Futemma, Akira; Tanabe, Tsutomu; Wada, Takao; Kato, Mitsugu; Munakata, Masahiro

Hoken Butsuri (Internet), 54(1), p.45 - 54, 2019/04

Journal Articles

Baseband simulation model of the vector rf voltage control system for the J-PARC RCS

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Shimada, Taihei; Nomura, Masahiro; Hasegawa, Katsushi*; Hara, Keigo*; Furusawa, Masashi*

Journal of Physics; Conference Series, 1067, p.072030_1 - 072030_6, 2018/10

BB2018-0112.pdf:0.58MB

 Times Cited Count:2 Percentile:78.3

Vector RF voltage feedback control for the wideband magnetic alloy cavity of the J-PARC RCS is considered to be employed to compensate the heavy beam loading caused by high intensity proton beams. A prototype system of multiharmonic RF vector voltage control has been developed and is under testing. To characterize the system performance, full RF simulations could be performed by software like Simulink, while the software is proprietary and expensive. Also, it requires much computing power and time. We performed the simplified baseband simulations of the system in z-domain by using free software, Scilab and Python control library. It seems to be beneficial for searching the parameters that the baseband simulation can be performed quickly. In this presentation, we present the setup and results of the simulations. The simulations well reproduce the open and closed loop responses of the prototype system.

Journal Articles

Conceptual design of a single-ended MA cavity for J-PARC RCS upgrade

Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Journal of Physics; Conference Series, 1067, p.052014_1 - 052014_6, 2018/10

 Times Cited Count:2 Percentile:78.3

The J-PARC RCS employs Magnetic Alloy (MA) loaded cavities. The RF power is fed by vacuum tubes in push-pull operation. We realize multi-harmonic RF driving and beam loading compensation thanks to the broadband characteristics of the MA. However, the push-pull operation has disadvantages in multi-harmonics. An unbalance of the anode voltage swing remarkably appears at very high intensity beam acceleration. We propose a single-ended MA cavity for the RCS beam power upgrade, where no unbalance arises intrinsically.

Journal Articles

Next generation LLRF control system for J-PARC RCS

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; Hara, Keigo*; Furusawa, Masashi*

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1131 - 1135, 2018/08

The LLRF control system for the J-PARC RCS has been playing important roles for acceleration of high intensity proton beams. The key functions of the system are the dual harmonic voltage control and the multiharmonic rf feedforward to compensate the heavy beam loading in the wideband cavities. The system has been working fine for more than ten years, however, the old FPGAs in the system are already discontinued and not supported by current development environment. Maintenance of the system will be difficult soon. We are developing the next generation LLRF control system with the new form factor, MicroTCA.4, while the existing system is based on the VME. In this article, we describe the configuration of the new system, its functions, and the status of the development.

Journal Articles

Measurement of thermal deformation of magnetic alloy cores of radio frequency cavities in 3-GeV rapid-cycling synchrotron of Japan Proton Accelerator Research Complex

Shimada, Taihei; Nomura, Masahiro; Tamura, Fumihiko; Yamamoto, Masanobu; Sugiyama, Yasuyuki*; Omori, Chihiro*; Hasegawa, Katsushi*; Hara, Keigo*; Yoshii, Masahito*

Nuclear Instruments and Methods in Physics Research A, 875, p.92 - 103, 2017/12

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Observation of simultaneous oscillations of bunch shape and position caused by odd-harmonic beam loading in the Japan Proton Accelerator Research Complex Rapid Cycling Synchrotron

Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Progress of Theoretical and Experimental Physics (Internet), 2017(11), p.113G01_1 - 113G01_24, 2017/11

 Times Cited Count:1 Percentile:15.98(Physics, Multidisciplinary)

Two proton bunches circulates the accelerator ring in the J-PARC 3GeV synchrotoron (RCS). The accelerating voltage is also generated in twice of the revolution frequency. The major Fourier component of the wake voltage should become even harmonics. However, the odd harmonics grow and cause a large number of beam loss. The beam measurement suggests that the odd harmonic wake voltages promote oscillations of not only the bunch position but also the bunch shape. The oscillations continue because they amplify the odd harmonic beam components. A particle tracking simulation can reproduce these simultaneous oscillations. It is found that the odd harmonic wake voltages lead to severe rf bucket distortion that results in beam loss. As a result, introducing a beam loading compensation system for the minor harmonics can prevent the beam loss and it would contribute the stable accelerator operation with the reduction of the activation.

Journal Articles

Demonstration of laser processing technique combined with water jet technique for retrieval of fuel debris at Fukushima Daiichi Nuclear Power Station

Hanari, Toshihide; Takebe, Toshihiko*; Yamada, Tomonori; Daido, Hiroyuki; Ishizuka, Ippei*; Omori, Shinya*; Kurosawa, Koichi*; Sasaki, Go*; Nakada, Masahiro*; Sakai, Hideaki*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 3 Pages, 2017/04

In decommissioning of Fukushima Daiichi Nuclear Power Station, a retrieval process of fuel debris in the Primary Containment Vessel by a remote operation is one of the key issues. In this process, prevention of spreading radioactive materials is one of the important considerations. Furthermore, an applicable technique to the process requires keeping of reasonable processing-efficiency. We propose to use the combined technique including a laser light and a water jet as a retrieval technique of the fuel debris. The laser processing technique combined with a repetitive pulsed water jet could perform an efficient retrieval processing. Our experimental result encourages us to promote further development of the technique towards a real application at Fukushima Daiichi Nuclear Power Station.

333 (Records 1-20 displayed on this page)